Changeset 137 for prdatasets/arrhythmia.m
- Timestamp:
- 12/18/19 15:46:35 (5 years ago)
- Location:
- prdatasets
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
prdatasets
- Property svn:ignore
-
old new 3 3 *.data 4 4 *.asv 5 data
-
- Property svn:ignore
-
prdatasets/arrhythmia.m
r132 r137 1 %ARRHYTHMIA 4 20 objects with 279 features in 12classes1 %ARRHYTHMIA 452 objects with 279 features in 13 classes 2 2 % 3 % X = ARRHYTHMIA( CLASS,VAL)3 % X = ARRHYTHMIA(VAL) 4 4 % 5 5 % The aim is to distinguish between the presence and absence of cardiac 6 % arrhythmia and to classify it in one of the 16 groups. Class 01 refers 7 % to 'normal' ECG classes 02 to 15 refers to different classes of 8 % arrhythmia and class 16 refers to the rest of unclassified ones. 9 % 10 % X = ARRHYTHMIA(VAL); 6 % arrhythmia and to classify it in one of the 13 groups. Class 1 refers 7 % to 'normal' ECG classes 2 to 13 refer to different classes of 8 % arrhythmia. 11 9 % 12 10 % By default features with missing values are removed. When something else 13 11 % is desired, use one of the options in MISVAL for VAL. 14 12 % 15 % SEE ALSO <a href="http:// prtools.tudelft.nl/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a>13 % SEE ALSO <a href="http://37steps.com/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a> 16 14 % PRTOOLS, DATASETS, MISVAL 17 15 18 % Copyright: R.P.W. Duin 16 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 19 17 20 function x = arrhythmia(val) 21 if nargin < 1, val = 'f-remove'; end 22 a = pr_getdata('http://prtools.tudelft.nl/prdatasets/arrhythmia.dat',1); 18 function a = arrhythmia(val) 23 19 24 25 user.desc=['The Arrhymthmia database from UCI. The aim is to ' ... 20 if nargin < 1, val = 'f-remove'; end 21 a = pr_loadmatfile; 22 if isempty(a) 23 opt.delimeter = ','; 24 opt.labfeat = 280; 25 fl = {'age' 'sex' 'height' 'weight' 'QRS duration' 'P-R interval' ... 26 'Q-T interval' 'T interval' 'P interval' 'QRS' 'T' 'P' 'QRST' ... 27 'J' 'heartrate'}; 28 fl1 = {'Q wave width' 'R wave width' 'S wave width' 'R'' wave width' ... 29 'S'' wave width' 'number of intrinsic deflections' ... 30 'ragged R wave' 'diphasic derivation of R wave' ... 31 'ragged P wave' 'diphasic derivation of P wave' ... 32 'ragged T wave' 'diphasic derivation of T wave'}; 33 fl = [fl strcat('DI-',fl1) strcat('DII-',fl1) strcat('DIII-',fl1) ... 34 strcat('AVR-',fl1) strcat('AVL-',fl1) strcat('AVF-',fl1) ... 35 strcat('V1-',fl1) strcat('V2-',fl1) strcat('V3-',fl1) ... 36 strcat('V4-',fl1) strcat('V5-',fl1) strcat('V6-',fl1)]; 37 fl2 = {'JJ wave ampl' 'Q wave ampl' 'R wave ampl' ... 38 'S wave ampl' 'R'' wave ampl' 'S'' wave ampl' 'P wave ampl' ... 39 'T wave ampl' 'QRSA sum' 'QRSTA'}; 40 fl = [fl strcat('DI-',fl2) strcat('DII-',fl2) strcat('DIII-',fl2) ... 41 strcat('AVR-',fl2) strcat('AVL-',fl2) strcat('AVF-',fl2) ... 42 strcat('V1-',fl2) strcat('V2-',fl2) strcat('V3-',fl2) ... 43 strcat('V4-',fl2) strcat('V5-',fl2) strcat('V6-',fl2)]; 44 opt.featnames = fl; 45 opt.dsetname = 'Arrhythmia normal'; 46 % opt.classnames = {'benign' 'malignant'}; 47 opt.desc=['The Arrhymthmia database from UCI. The aim is to ' ... 26 48 'distinguish between the presence and absence of cardiac ' ... 27 49 'arrhythmia and to classify it in one of the 16 groups.']; 28 user.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/arrhythmia'; 29 30 fl = {'age' 'sex' 'height' 'weight' 'QRS duration' 'P-R interval' ... 31 'Q-T interval' 'T interval' 'P interval' 'QRS' 'T' 'P' 'QRST' ... 32 'J' 'heartrate'}; 33 fl1 = {'Q wave width' 'R wave width' 'S wave width' 'R'' wave width' ... 34 'S'' wave width' 'number of intrinsic deflections' ... 35 'ragged R wave' 'diphasic derivation of R wave' ... 36 'ragged P wave' 'diphasic derivation of P wave' ... 37 'ragged T wave' 'diphasic derivation of T wave'}; 38 fl = [fl strcat('DI-',fl1) strcat('DII-',fl1) strcat('DIII-',fl1) ... 39 strcat('AVR-',fl1) strcat('AVL-',fl1) strcat('AVF-',fl1) ... 40 strcat('V1-',fl1) strcat('V2-',fl1) strcat('V3-',fl1) ... 41 strcat('V4-',fl1) strcat('V5-',fl1) strcat('V6-',fl1)]; 42 fl2 = {'JJ wave ampl' 'Q wave ampl' 'R wave ampl' ... 43 'S wave ampl' 'R'' wave ampl' 'S'' wave ampl' 'P wave ampl' ... 44 'T wave ampl' 'QRSA sum' 'QRSTA'}; 45 fl = [fl strcat('DI-',fl2) strcat('DII-',fl2) strcat('DIII-',fl2) ... 46 strcat('AVR-',fl2) strcat('AVL-',fl2) strcat('AVF-',fl2) ... 47 strcat('V1-',fl2) strcat('V2-',fl2) strcat('V3-',fl2) ... 48 strcat('V4-',fl2) strcat('V5-',fl2) strcat('V6-',fl2)]; 49 50 x = pr_dataset(a(:,1:(end-1)),a(:,end)); 51 x = setfeatlab(x,fl); 52 x = setname(x,'Arrhythmia normal'); 53 x = setuser(x,user); 54 x = misval(x,val); 50 opt.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/arrhythmia'; 51 a = pr_download('http://prtools.tudelft.nl/prdatasets/arrhythmia.dat',[],opt); 52 end 53 a = misval(a,val); 55 54 56 55 return
Note: See TracChangeset
for help on using the changeset viewer.