Changeset 137
- Timestamp:
- 12/18/19 15:46:35 (5 years ago)
- Location:
- prdatasets
- Files:
-
- 4 added
- 2 deleted
- 46 edited
Legend:
- Unmodified
- Added
- Removed
-
prdatasets
- Property svn:ignore
-
old new 3 3 *.data 4 4 *.asv 5 data
-
- Property svn:ignore
-
prdatasets/arrhythmia.m
r132 r137 1 %ARRHYTHMIA 4 20 objects with 279 features in 12classes1 %ARRHYTHMIA 452 objects with 279 features in 13 classes 2 2 % 3 % X = ARRHYTHMIA( CLASS,VAL)3 % X = ARRHYTHMIA(VAL) 4 4 % 5 5 % The aim is to distinguish between the presence and absence of cardiac 6 % arrhythmia and to classify it in one of the 16 groups. Class 01 refers 7 % to 'normal' ECG classes 02 to 15 refers to different classes of 8 % arrhythmia and class 16 refers to the rest of unclassified ones. 9 % 10 % X = ARRHYTHMIA(VAL); 6 % arrhythmia and to classify it in one of the 13 groups. Class 1 refers 7 % to 'normal' ECG classes 2 to 13 refer to different classes of 8 % arrhythmia. 11 9 % 12 10 % By default features with missing values are removed. When something else 13 11 % is desired, use one of the options in MISVAL for VAL. 14 12 % 15 % SEE ALSO <a href="http:// prtools.tudelft.nl/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a>13 % SEE ALSO <a href="http://37steps.com/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a> 16 14 % PRTOOLS, DATASETS, MISVAL 17 15 18 % Copyright: R.P.W. Duin 16 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 19 17 20 function x = arrhythmia(val) 21 if nargin < 1, val = 'f-remove'; end 22 a = pr_getdata('http://prtools.tudelft.nl/prdatasets/arrhythmia.dat',1); 18 function a = arrhythmia(val) 23 19 24 25 user.desc=['The Arrhymthmia database from UCI. The aim is to ' ... 20 if nargin < 1, val = 'f-remove'; end 21 a = pr_loadmatfile; 22 if isempty(a) 23 opt.delimeter = ','; 24 opt.labfeat = 280; 25 fl = {'age' 'sex' 'height' 'weight' 'QRS duration' 'P-R interval' ... 26 'Q-T interval' 'T interval' 'P interval' 'QRS' 'T' 'P' 'QRST' ... 27 'J' 'heartrate'}; 28 fl1 = {'Q wave width' 'R wave width' 'S wave width' 'R'' wave width' ... 29 'S'' wave width' 'number of intrinsic deflections' ... 30 'ragged R wave' 'diphasic derivation of R wave' ... 31 'ragged P wave' 'diphasic derivation of P wave' ... 32 'ragged T wave' 'diphasic derivation of T wave'}; 33 fl = [fl strcat('DI-',fl1) strcat('DII-',fl1) strcat('DIII-',fl1) ... 34 strcat('AVR-',fl1) strcat('AVL-',fl1) strcat('AVF-',fl1) ... 35 strcat('V1-',fl1) strcat('V2-',fl1) strcat('V3-',fl1) ... 36 strcat('V4-',fl1) strcat('V5-',fl1) strcat('V6-',fl1)]; 37 fl2 = {'JJ wave ampl' 'Q wave ampl' 'R wave ampl' ... 38 'S wave ampl' 'R'' wave ampl' 'S'' wave ampl' 'P wave ampl' ... 39 'T wave ampl' 'QRSA sum' 'QRSTA'}; 40 fl = [fl strcat('DI-',fl2) strcat('DII-',fl2) strcat('DIII-',fl2) ... 41 strcat('AVR-',fl2) strcat('AVL-',fl2) strcat('AVF-',fl2) ... 42 strcat('V1-',fl2) strcat('V2-',fl2) strcat('V3-',fl2) ... 43 strcat('V4-',fl2) strcat('V5-',fl2) strcat('V6-',fl2)]; 44 opt.featnames = fl; 45 opt.dsetname = 'Arrhythmia normal'; 46 % opt.classnames = {'benign' 'malignant'}; 47 opt.desc=['The Arrhymthmia database from UCI. The aim is to ' ... 26 48 'distinguish between the presence and absence of cardiac ' ... 27 49 'arrhythmia and to classify it in one of the 16 groups.']; 28 user.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/arrhythmia'; 29 30 fl = {'age' 'sex' 'height' 'weight' 'QRS duration' 'P-R interval' ... 31 'Q-T interval' 'T interval' 'P interval' 'QRS' 'T' 'P' 'QRST' ... 32 'J' 'heartrate'}; 33 fl1 = {'Q wave width' 'R wave width' 'S wave width' 'R'' wave width' ... 34 'S'' wave width' 'number of intrinsic deflections' ... 35 'ragged R wave' 'diphasic derivation of R wave' ... 36 'ragged P wave' 'diphasic derivation of P wave' ... 37 'ragged T wave' 'diphasic derivation of T wave'}; 38 fl = [fl strcat('DI-',fl1) strcat('DII-',fl1) strcat('DIII-',fl1) ... 39 strcat('AVR-',fl1) strcat('AVL-',fl1) strcat('AVF-',fl1) ... 40 strcat('V1-',fl1) strcat('V2-',fl1) strcat('V3-',fl1) ... 41 strcat('V4-',fl1) strcat('V5-',fl1) strcat('V6-',fl1)]; 42 fl2 = {'JJ wave ampl' 'Q wave ampl' 'R wave ampl' ... 43 'S wave ampl' 'R'' wave ampl' 'S'' wave ampl' 'P wave ampl' ... 44 'T wave ampl' 'QRSA sum' 'QRSTA'}; 45 fl = [fl strcat('DI-',fl2) strcat('DII-',fl2) strcat('DIII-',fl2) ... 46 strcat('AVR-',fl2) strcat('AVL-',fl2) strcat('AVF-',fl2) ... 47 strcat('V1-',fl2) strcat('V2-',fl2) strcat('V3-',fl2) ... 48 strcat('V4-',fl2) strcat('V5-',fl2) strcat('V6-',fl2)]; 49 50 x = pr_dataset(a(:,1:(end-1)),a(:,end)); 51 x = setfeatlab(x,fl); 52 x = setname(x,'Arrhythmia normal'); 53 x = setuser(x,user); 54 x = misval(x,val); 50 opt.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/arrhythmia'; 51 a = pr_download('http://prtools.tudelft.nl/prdatasets/arrhythmia.dat',[],opt); 52 end 53 a = misval(a,val); 55 54 56 55 return -
prdatasets/auto_mpg.m
r132 r137 7 7 % 8 8 % There are two classes: 229 objects < 25 mpg and 169 objects > 25 mpg. 9 % For some reason sone of the original features is missing (horsepower).9 % For some reason one of the original features is missing (horsepower). 10 10 % 11 11 % See also DATASETS, PRDATASETS 12 12 13 % Copyright: R.P.W. Duin 13 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 14 14 % Faculty EWI, Delft University of Technology 15 15 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 18 18 19 19 function a = auto_mpg 20 a = pr_getdata('http://prtools.tudelft.nl/prdatasets/auto_mpg.mat',1); 21 %a = setname(a,'Car-miles-per-gallon');20 21 a = pr_getdata; 22 22 a = setlablist(a,char('< 25 mpg ','> 25 mpg')); 23 23 a = setfeatlab(a,char(... … … 28 28 'model year: multi-valued discrete', ... 29 29 'origin: multi-valued discrete')); 30 a = setname(a,'Auto MPG'); -
prdatasets/biomed.m
r132 r137 15 15 % Just the original features 3, 5, 6, 7 and 8 are used. 16 16 % 17 % SEE ALSO <a href="http:// prtools.tudelft.nl/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a>17 % SEE ALSO <a href="http://37steps.com/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a> 18 18 % PRTOOLS, DATASETS, MISVAL 19 19 20 % Copyright: R.P.W. Duin 20 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 21 21 22 function x= biomed(val)22 function a = biomed(val) 23 23 24 24 if nargin < 1, val = 'remove'; end 25 a = pr_getdata('http://prtools.tudelft.nl/prdatasets/biomed.dat',1);26 25 27 user.desc = 'The purpose of the analysis is to develop a screening procedure to detect carriers and to describe its effectiveness. '; 28 user.link = 'http://lib.stat.cmu.edu/datasets/'; 29 cl = {'carrier' 'normal'}; 30 fl = {'age' 'measurement 1' 'measurement 2' 'measurement 3' 'measurement 4'}; 31 32 x = pr_dataset(a(:,[3 5 6 7 8]),cl(a(:,end))); 33 x = setfeatlab(x,fl); 34 x = setname(x,'Biomed'); 35 x = setuser(x,user); 36 x = misval(x,val); 26 a = pr_loadmatfile; 27 if isempty(a) 28 opt.labfeat = 9; 29 opt.feats = [3,5,6,7,8]; 30 opt.featnames = {'age' 'measurement 1' 'measurement 2' 'measurement 3' 'measurement 4'}; 31 opt.classnames = {'carrier' 'normal'}; 32 opt.desc = 'The purpose of the analysis is to develop a screening procedure to detect carriers and to describe its effectiveness. '; 33 opt.link = 'http://lib.stat.cmu.edu/datasets/'; 34 a = pr_download('http://prtools.tudelft.nl/prdatasets/biomed.dat',[],opt); 35 end 36 a = misval(a,val); 37 37 38 38 return -
prdatasets/breast.m
r132 r137 13 13 % 14 14 % By default objects with missing values are removed. When something else 15 % is desired, use one of the options in MISVAL for V al.15 % is desired, use one of the options in MISVAL for VAL. 16 16 % 17 % SEE ALSO <a href="http:// prtools.tudelft.nl/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a>17 % SEE ALSO <a href="http://37steps.com/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a> 18 18 % PRTOOLS, DATASETS, MISVAL 19 19 20 % Copyright: R.P.W. Duin 20 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 21 21 22 function x= breast(val)22 function a = breast(val) 23 23 24 24 if nargin < 1, val = 'remove'; end 25 %prdatasets(mfilename,1,'http://prtools.tudelft.nl/prdatasets/breastorg.dat');26 25 27 a = pr_getdata('http://prtools.tudelft.nl/prdatasets/breastorg.dat',1); 28 29 user.desc='The original database of the Wisconsin Breast Cancer Databases from UCI, containing 699 instances, collected between 1989 and 1991. '; 30 user.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/breast-cancer-wisconsin/'; 31 cl = {'benign' 'malignant'}; 32 fl = {'Clump Thickness' 'Uniformity of Cell Size' ... 33 'Uniformity of Cell Shape' 'Marginal Adhesion' ... 34 'Single Epithelial Cell Size' 'Bare Nuclei' 'Bland Chromatin' ... 35 'Normal Nucleoli' 'Mitoses'}; 36 37 %a = load('breastorg.dat'); % Octave cannot find it 38 %a = load(fullfile(fileparts(which(mfilename)),'breastorg.dat')); 39 J = find(a==-1); 40 a(J) = NaN; 41 nlab = a(:,end)/2; % the labels for the classes are (2,4), very strange 42 x = pr_dataset(a(:,2:(end-1)), cl(nlab) ); 43 x = setfeatlab(x,fl); 44 x = setname(x,'Breast Wisconsin'); 45 x = misval(x,val); 46 x = setuser(x,user); 26 a = pr_loadmatfile; 27 if isempty(a) 28 opt.delimeter = ','; 29 opt.labfeat = 11; 30 opt.featnames = {'Clump Thickness' 'Uniformity of Cell Size' ... 31 'Uniformity of Cell Shape' 'Marginal Adhesion' ... 32 'Single Epithelial Cell Size' 'Bare Nuclei' 'Bland Chromatin' ... 33 'Normal Nucleoli' 'Mitoses'}; 34 opt.feats = [2:10]; 35 opt.misvalue = -1; 36 opt.classnames = {'benign' 'malignant'}; 37 opt.desc='The original database of the Wisconsin Breast Cancer Databases from UCI, containing 699 instances, collected between 1989 and 1991. '; 38 opt.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/breast-cancer-wisconsin/'; 39 opt.dsetname = 'Breast Wisconsin'; 40 a = pr_download('http://prtools.tudelft.nl/prdatasets/breastorg.dat',[],opt); 41 end 42 a = misval(a,val); 47 43 48 44 return -
prdatasets/car.m
r127 r137 8 8 % 1(1), pp. 145-157, 1990.). All 6 features are nominal. 9 9 % The instances completely cover the attribute space. 10 % 11 % SEE ALSO <a href="http://37steps.com/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a> 12 % PRTOOLS, DATASETS 10 13 11 function x = car 14 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 12 15 13 prdatasets(mfilename,1,'http://prtools.tudelft.nl/prdatasets/car.data'); 14 % for some mysterious reason it appeared to be necessary on my Windows 7 15 % system to repeat this command 16 prdatasets(mfilename,1,'http://prtools.tudelft.nl/prdatasets/car.data'); 17 user.desc = 'Car Evaluation Database was derived from a simple hierarchical decision model originally developed for the demonstration of DEX (M. Bohanec, V. Rajkovic: Expert system for decision making. Sistemica 1(1), pp. 145-157, 1990.).'; 18 fl = {'buying price' 'maintenance price' 'nr of doors' 'nr of persons' 'luggage boot' 'safety'}; 19 20 datfile = fullfile(fileparts(which(mfilename)),'car.data'); 21 x = pr_readdataset(datfile,0,',',[],'ccccccc',7); 22 x = setfeatlab(x,fl); 23 x = setuser(x,user); 24 x = setname(x,'Car'); 16 function a = car 17 18 a = pr_loadmatfile; 19 if isempty(a) 20 opt.delimeter = ','; 21 opt.format = 'ccccccc'; 22 opt.labfeat = 7; 23 opt.desc = 'Car Evaluation Database was derived from a simple hierarchical decision model originally developed for the demonstration of DEX (M. Bohanec, V. Rajkovic: Expert system for decision making. Sistemica 1(1), pp. 145-157, 1990.).'; 24 opt.featnames = {'buying price' 'maintenance price' 'nr of doors' 'nr of persons' 'luggage boot' 'safety'}; 25 opt.desc = 'The purpose of the analysis is to develop a screening procedure to detect carriers and to describe its effectiveness. '; 26 opt.link = 'http://lib.stat.cmu.edu/datasets/'; 27 opt.dsetname = 'Car'; 28 a = pr_download('http://prtools.tudelft.nl/prdatasets/car.data',[],opt); 29 end 25 30 26 31 return -
prdatasets/cbands.m
r132 r137 9 9 % See also DATASETS, PRDATASETS 10 10 11 % Copyright: R.P.W. Duin 11 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 12 12 % Faculty EWI, Delft University of Technology 13 13 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 15 15 function a = cbands 16 16 17 prdatasets(mfilename,1); 18 a = pr_dataset('cbands'); 17 a = pr_getdata; 19 18 a = setname(a,'Chromosome Bands'); -
prdatasets/chromo.m
r132 r137 6 6 % thresholded chromosomes. This technique is outdated. 7 7 8 % Copyright: R.P.W. Duin 8 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 9 9 % Faculty EWI, Delft University of Technology 10 10 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 12 12 function a = chromo 13 13 14 prdatasets(mfilename,1); 15 datfile = fullfile(fileparts(which(mfilename)),'chromo'); 16 a = pr_dataset(datfile); 14 a = pr_getdata; 17 15 a = setname(a,'Chromosome Features'); -
prdatasets/diabetes.m
r127 r137 8 8 % //www.ics.uci.edu/~mlearn/MLRepository.html 9 9 10 function x = diabetes 11 12 prdatasets(mfilename,1,'http://prtools.tudelft.nl/prdatasets/diabetes.dat'); 13 user.desc='The Pima Indians Diabetes Database from UCI.'; 14 user.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pima-indians-diabetes/'; 15 cl = {'present' 'absent'}; 16 fl = {'NumPregnancies' 'plasmaGlucose' 'diastolicBloodPr' ... 17 'tricepsSkinfold' '2hrSerumInsulin' 'BodyMassIndex' ... 18 'DiabetesPedigreeFn' 'Age'}; 19 20 a = load('diabetes.dat'); 21 x = pr_dataset(a(:,1:(end-1)),cl(a(:,end)+1)); 22 x = setfeatlab(x,fl); 23 x = setname(x,'Diabetes'); 24 x = setuser(x,user); 10 function a = diabetes 11 12 a = pr_loadmatfile; 13 if isempty(a) 14 opt.delimeter = ' '; 15 opt.labfeat = 9; 16 opt.featnames = {'NumPregnancies' 'plasmaGlucose' 'diastolicBloodPr' ... 17 'tricepsSkinfold' '2hrSerumInsulin' 'BodyMassIndex' ... 18 'DiabetesPedigreeFn' 'Age'}; 19 opt.classnames = {'present' 'absent'}; 20 opt.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pima-indians-diabetes/'; 21 opt.desc = 'The Pima Indians Diabetes Database from UCI.'; 22 a = pr_download('http://prtools.tudelft.nl/prdatasets/diabetes.dat',[],opt); 23 end 25 24 26 25 return -
prdatasets/ecoli.m
r127 r137 7 7 % This is the 'Ecoli' dataset of the UCI Machine Learning Repository, 8 8 % //www.ics.uci.edu/~mlearn/MLRepository.html 9 function x = ecoli10 9 11 prdatasets(mfilename,1,'http://prtools.tudelft.nl/prdatasets/ecoli.dat'); 12 user.desc='The Ecoli database from UCI. Goal is to Predict the localization site of protein in a cell, by Kenta Nakai Institue of Molecular and Cellular Biology Osaka, University.'; 13 user.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/ecoli/'; 14 cl = {'cytoplasm' 'inner membrane without signal sequence' ... 15 'periplasm' 'inner membrane, uncleavable signal sequence' ... 16 'outer membrane' 'outer membrane lipoprotein' ... 17 'inner membrane lipoprotein' 'inner membrane, cleavable signal sequence'}; 18 fl = {'mcg' 'gvh' 'lip' 'chg' 'aac' 'alm1' 'alm2'}; 10 function a = ecoli 19 11 20 a = load('ecoli.dat'); 21 x = pr_dataset(a(:,1:(end-1)),cl(a(:,end))); 22 x = setfeatlab(x,fl); 23 x = setname(x,'Ecoli'); 24 x = setuser(x,user); 12 a = pr_loadmatfile; 13 if isempty(a) 14 opt.labfeat = 8; 15 opt.featnames = {'mcg' 'gvh' 'lip' 'chg' 'aac' 'alm1' 'alm2'}; 16 opt.classnames = {'cytoplasm' 'inner membrane without signal sequence' ... 17 'periplasm' 'inner membrane, uncleavable signal sequence' ... 18 'outer membrane' 'outer membrane lipoprotein' ... 19 'inner membrane lipoprotein' 'inner membrane, cleavable signal sequence'}; 20 opt.desc='The Ecoli database from UCI. Goal is to Predict the localization site of protein in a cell, by Kenta Nakai Institue of Molecular and Cellular Biology Osaka, University.'; 21 opt.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/ecoli/'; 22 opt.dsetname = 'Ecoli'; 23 a = pr_download('http://prtools.tudelft.nl/prdatasets/ecoli.dat',[],opt); 24 end 25 25 26 26 return -
prdatasets/emim.m
r132 r137 16 16 % See also DATASETS, PRDATASETS 17 17 18 % Copyright: R.P.W. Duin 18 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 19 19 % Faculty EWI, Delft University of Technology 20 20 % P.O. Box 5038, 2600 GA Delft, The Netherlands … … 28 28 end 29 29 30 name = ['emim' num2str(n)]; 31 prdatasets(mfilename,1,['http://prtools.tudelft.nl/prdatasets/' name '.mat']); 32 a = pr_dataset(name); 30 name = ['emim' num2str(n) '.mat']; 31 a = pr_getdata(['http://prtools.tudelft.nl/prdatasets/' name],[],name); 33 32 a = setname(a,['EM' num2str(n) ' Image Delft']); 34 33 -
prdatasets/glass.m
r132 r137 16 16 % See also DATASETS, PRDATASETS 17 17 18 % Copyright: R.P.W. Duin 18 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 19 19 % Faculty EWI, Delft University of Technology 20 20 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 22 22 function a = glass 23 23 24 prdatasets(mfilename,1); 25 a = pr_dataset('glass'); 24 a = pr_getdata('http://prtools.tudelft.nl/prdatasets/glass.mat',1); 26 25 a = setname(a,'Glass Identification Dataset'); 27 26 a = setlablist(a,char('BuildingFloat','BuildingNonFloat','Car','Other')); -
prdatasets/heart.m
r132 r137 11 11 % is desired, use one of the options in MISVAL. 12 12 % 13 % SEE ALSO <a href="http:// prtools.tudelft.nl/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a>13 % SEE ALSO <a href="http://37steps.com/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a> 14 14 % PRTOOLS, DATASETS, MISVAL 15 15 16 % Copyright: R.P.W. Duin 16 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 17 17 18 function x= heart(val)18 function a = heart(val) 19 19 20 prdatasets(mfilename,1,'http://prtools.tudelft.nl/prdatasets/heart.dat');21 20 if nargin<1 22 21 val = 'remove'; 23 22 end 24 25 user.desc='The Cleveland database from the Heart Disease Databases from UCI. The class disease-presence is used as target class. '; 26 user.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/heart-cleveland/'; 27 cl = {'absent' 'present'}; 28 fl = {'age' 'sex' 'cp' 'trestbps' 'chol' 'fbs' 'restecg' ... 29 'thalach' 'exang' 'oldpeak' 'slope' 'ca' 'thal'}; 30 fd = {[0 inf; 0 inf] [0 1] [1 2 3 4] [0 inf; 0 inf] [0 inf; 0 inf] ... 23 a = pr_loadmatfile; 24 if isempty(a) 25 opt.labfeat = 14; 26 opt.featnames = {'age' 'sex' 'cp' 'trestbps' 'chol' 'fbs' 'restecg' ... 27 'thalach' 'exang' 'oldpeak' 'slope' 'ca' 'thal'}; 28 opt.classnames = {'absent' 'present' 'present' 'present' 'present'}; 29 opt.desc='The Cleveland database from the Heart Disease Databases from UCI. The class disease-presence is used as target class. '; 30 opt.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/heart-cleveland/'; 31 opt.dsetname = 'Heart Cleveland'; 32 a = pr_download('http://prtools.tudelft.nl/prdatasets/heart.dat',[],opt); 33 nlab = getnlab(a); 34 nlab(nlab>1) = 2; 35 a = setnlab(a,nlab); 36 a = remclass(a); 37 fd = {[0 inf; 0 inf] [0 1] [1 2 3 4] [0 inf; 0 inf] [0 inf; 0 inf] ... 31 38 [0 1] [0 1 2] [0 inf; 0 inf] [0 1] [0 inf; 0 inf] [1 2 3] [-1 0 1 2 3] [3 6 7]}; 32 33 a = load('heart.dat'); 34 lab = (a(:,end)>0); 35 x = pr_dataset(a(:,1:(end-1)),cl(lab+1)); 36 x = setfeatlab(x,fl); 37 x = setname(x,'Heart Cleveland'); 38 x = setfeatdom(x,fd); 39 [x,msg] = misval(x,val); 40 user.desc = [user.desc msg]; 41 x = setuser(x,user); 39 x = setfeatdom(a,fd); 40 pr_savematfile(a); 41 end 42 [a,msg] = misval(a,val); 42 43 43 44 return -
prdatasets/hepatitis.m
r132 r137 1 1 %HEPATITIS 155 objects with 19 features in 2 classes 2 2 % 3 % X= HEPATITIS3 % A = HEPATITIS 4 4 % 5 5 % The hepatitis database from UCI to predict if the patient will live or 6 6 % die. 7 7 % 8 % X= HEPATITIS(VAL)8 % A = HEPATITIS(VAL) 9 9 % 10 10 % By default objects with missing values are removed. When something else 11 11 % is desired, use one of the options in MISVAL. 12 12 % 13 % SEE ALSO <a href="http:// prtools.tudelft.nl/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a>13 % SEE ALSO <a href="http://37steps.com/prtools">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a> 14 14 % PRTOOLS, DATASETS, MISVAL 15 15 16 % Copyright: R.P.W. Duin 16 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 17 17 18 function x = hepatitis(val);18 function a = hepatitis(val) 19 19 20 prdatasets(mfilename,1,'http://prtools.tudelft.nl/prdatasets/hepatitis.dat');21 20 if nargin<1 22 21 val = 'remove'; 23 22 end 24 23 25 user.desc = 'The hepatitis database from UCI to predict if the patient will live or die.';26 user.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/hepatitis/'; 27 cl = {'die' 'live'};28 fl = {'age' 'sex' 'steroid' 'antivirals' 'fatigue' 'malaise' ... 29 'anorexia' 'liver big' 'liver firm' 'spleen palpable' 'spiders' ...30 'ascites' 'varices' 'bilirubin' 'alk phosphate' 'sgot' 'albumin' ...31 'protime' 'histology'}; 32 33 a = load('hepatitis.dat');34 x = pr_dataset(a(:,2:end),cl(a(:,1)));35 x = setfeatlab(x,fl);36 x = setname(x,'Hepatitis');37 [x,msg] = misval(x,val);38 user.desc = [user.desc msg]; 39 x = setuser(x,user);24 a = pr_loadmatfile; 25 if isempty(a) 26 opt.delimeter = ' '; 27 opt.labfeat = 1; 28 opt.featnames = {'age' 'sex' 'steroid' 'antivirals' 'fatigue' 'malaise' ... 29 'anorexia' 'liver big' 'liver firm' 'spleen palpable' 'spiders' ... 30 'ascites' 'varices' 'bilirubin' 'alk phosphate' 'sgot' 'albumin' ... 31 'protime' 'histology'}; 32 opt.classnames = {'die' 'live'}; 33 opt.desc = 'The hepatitis database from UCI to predict if the patient will live or die.'; 34 user.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/hepatitis/'; 35 opt.dsetname = 'Hepatitis Data Set'; 36 a = pr_download('http://prtools.tudelft.nl/prdatasets/hepatitis.dat',[],opt); 37 end 38 a = misval(a,val); -
prdatasets/imox.m
r132 r137 10 10 % See also DATASETS, PRDATASETS, X80 11 11 12 % Copyright: R.P.W. Duin 12 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 13 13 % Faculty EWI, Delft University of Technology 14 14 % P.O. Box 5031, 2600 GA Delft, The Netherlands 15 15 16 function a = imox ;16 function a = imox 17 17 18 prdatasets(mfilename,1); 19 a = pr_dataset('imox'); 18 a = pr_getdata; 20 19 a = setname(a,'IMOX Dataset'); 21 20 a = setlablist(a,char('I','M','O','X')); -
prdatasets/ionosphere.m
r132 r137 11 11 % See also DATASETS, PRDATASETS 12 12 13 % Copyright: R.P.W. Duin 13 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 14 14 % Faculty EWI, Delft University of Technology 15 15 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 17 17 function a = ionosphere 18 18 19 prdatasets(mfilename,1); 20 % the stats toolbox has a ionosphere.mat file too, avoid it 21 pp = fileparts(which(mfilename)); 22 a = pr_dataset(fullfile(pp,'ionosphere')); 19 a = pr_getdata; 23 20 a = setname(a,'Ionosphere Dataset'); 24 21 a = setlablist(a,{'good','bad'}); -
prdatasets/iris.m
r132 r137 5 5 % Iris plants dataset by R.A.Fisher, 150 objects, 4 features, 3 6 6 % classes. 7 function x = iris;8 7 9 prdatasets(mfilename,1,'http://prtools.tudelft.nl/prdatasets/iris.dat'); 10 user.desc = 'Iris Plant database from UCI. A classic dataset in the pattern recognition literature. The original dataset is a multiclass classification problem, introduced by R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann Eugenics, 7:179--188, 1936.'; 11 user.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/iris/'; 12 cl = {'Iris-setosa' 'Iris-versicolor' 'Iris-virginica'}; 13 fl = {'sepal length' 'sepal width' 'petal length' 'petal width'}; 8 function a = iris 14 9 15 % the fuzzy toolbox has a iris.dat file too, avoid it 16 pp = fileparts(which(mfilename)); 17 a = load(fullfile(pp,'iris.dat')); 18 x = pr_dataset(a(:,1:(end-1)), cl(a(:,end))); 19 x = setfeatlab(x,fl); 20 x = setuser(x,user); 21 x = setname(x,'Iris'); 10 a = pr_loadmatfile; 11 if isempty(a) 12 opt.labfeat = 5; 13 opt.featnames = {'sepal length' 'sepal width' 'petal length' 'petal width'}; 14 opt.classnames = {'Iris-setosa' 'Iris-versicolor' 'Iris-virginica'}; 15 opt.desc = 'Iris Plant database from UCI. A classic dataset in the pattern recognition literature. The original dataset is a multiclass classification problem, introduced by R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann Eugenics, 7:179--188, 1936.'; 16 opt.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/iris/'; 17 opt.dsetname = 'Iris'; 18 a = pr_download('http://prtools.tudelft.nl/prdatasets/iris.dat',[],opt); 19 end 22 20 23 21 return -
prdatasets/kimia.m
r132 r137 11 11 % See also DATASETS, PRDATASETS, PRDATAFILES, PRDATAFILES/KIMIA_IMAGES 12 12 13 % Copyright: R.P.W. Duin 13 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 14 14 % Faculty EWI, Delft University of Technology 15 15 % P.O. Box 5031, 2600 GA Delft, The Netherlands 16 16 17 function a = kimia ;17 function a = kimia 18 18 19 prdatasets(mfilename,1);19 a = pr_getdata; 20 20 labs = {'bone' 'glass' 'heart' 'misk' 'bird' 'brick' 'camel' ... 21 21 'car' 'children' 'van' 'elephant' 'head' 'fork' 'fountain' ... 22 22 'hammer' 'key' 'ray' 'turtle'}; 23 a = pr_dataset('kimia');24 23 a = setlablist(a,labs); 25 24 a = setname(a,'Kimia Dataset'); -
prdatasets/lena.m
r132 r137 8 8 % See also DATASETS, PRDATASETS 9 9 10 % Copyright: R.P.W. Duin 10 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 11 11 % Faculty EWI, Delft University of Technology 12 12 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 14 14 function a = lena 15 15 16 prdatasets(mfilename,2); 17 s = warning; 18 a = pr_dataset('lena'); 16 a = pr_getdata; 19 17 a = setfeatlab(a,['red ';'green';'blue ']); 20 18 a = setname(a,'Lena'); -
prdatasets/liver.m
r132 r137 9 9 % See also DATASETS, PRDATASETS 10 10 11 % Copyright: R.P.W. Duin 11 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 12 12 % Faculty EWI, Delft University of Technology 13 13 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 15 15 function a = liver 16 16 17 prdatasets(mfilename,1); 18 a = pr_dataset('liver'); 17 a = pr_getdata; 19 18 a = setname(a,'Liver disorder dataset'); 20 21 19 a = setlablist(a,char('healthy','disorder')); 22 20 a = setfeatlab(a,char(... -
prdatasets/malaysia.m
r132 r137 8 8 % See also DATASETS, PRDATASETS 9 9 10 % Copyright: R.P.W. Duin 10 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 11 11 % Faculty EWI, Delft University of Technology 12 12 % P.O. Box 5038, 2600 GA Delft, The Netherlands 13 13 14 function a = malaysia ;14 function a = malaysia 15 15 16 prdatasets(mfilename,1); 17 a = pr_dataset('malaysia'); 16 a = pr_getdata; 18 17 a = setname(a,'Malaysia Data'); -
prdatasets/mfeat.m
r132 r137 24 24 % MFEAT_PIX, MFEAT_ZER 25 25 26 % Copyright: R.P.W. Duin 26 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 27 27 % Faculty EWI, Delft University of Technology 28 28 % P.O. Box 5031, 2600 GA Delft, The Netherlands -
prdatasets/mfeat_all.m
r132 r137 19 19 % See also DATASETS, PRDATASETS, 20 20 21 % Copyright: R.P.W. Duin 21 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 22 22 % Faculty EWI, Delft University of Technology 23 23 % P.O. Box 5031, 2600 GA Delft, The Netherlands -
prdatasets/mfeat_fac.m
r132 r137 8 8 % See also DATASETS, PRDATASETS, MFEAT 9 9 10 % Copyright: R.P.W. Duin 10 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 11 11 % Faculty EWI, Delft University of Technology 12 12 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 14 14 function a = mfeat_fac 15 15 16 prdatasets(mfilename,1); 17 a = pr_dataset('mfeat_fac'); 16 a = pr_getdata; 18 17 a = setname(a,'MFEAT Face Features'); -
prdatasets/mfeat_fou.m
r132 r137 7 7 % See also DATASETS, PRDATASETS, MFEAT 8 8 9 % Copyright: R.P.W. Duin 9 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 10 10 % Faculty EWI, Delft University of Technology 11 11 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 13 13 function a = mfeat_fou 14 14 15 prdatasets(mfilename,1); 16 a = pr_dataset('mfeat_fou'); 15 a = pr_getdata; 17 16 a = setname(a,'MFEAT Fourier Features'); -
prdatasets/mfeat_kar.m
r132 r137 7 7 % See also DATASETS, PRDATASETS, MFEAT 8 8 9 % Copyright: R.P.W. Duin 9 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 10 10 % Faculty EWI, Delft University of Technology 11 11 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 13 13 function a = mfeat_kar 14 14 15 prdatasets(mfilename,1); 16 a = pr_dataset('mfeat_kar'); 15 a = pr_getdata; 17 16 a = setname(a,'MFEAT KL Features'); -
prdatasets/mfeat_mor.m
r132 r137 7 7 % See also DATASETS, PRDATASETS, MFEAT 8 8 9 % Copyright: R.P.W. Duin 9 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 10 10 % Faculty EWI, Delft University of Technology 11 11 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 13 13 function a = mfeat_mor 14 14 15 prdatasets(mfilename,1); 16 a = pr_dataset('mfeat_mor'); 15 a = pr_getdata; 17 16 a = setname(a,'MFEAT Morphological Features'); -
prdatasets/mfeat_pix.m
r132 r137 8 8 % See also DATASETS, PRDATASETS, MFEAT 9 9 10 % Copyright: R.P.W. Duin 10 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 11 11 % Faculty EWI, Delft University of Technology 12 12 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 14 14 function a = mfeat_pix 15 15 16 prdatasets(mfilename,1); 17 a = pr_dataset('mfeat_pix'); 16 a = pr_getdata; 18 17 a = setname(a,'MFEAT Pixel Features'); -
prdatasets/mfeat_zer.m
r132 r137 7 7 % See also DATASETS, PRDATASETS, MFEAT 8 8 9 % Copyright: R.P.W. Duin 9 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 10 10 % Faculty EWI, Delft University of Technology 11 11 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 13 13 function a = mfeat_zer 14 14 15 prdatasets(mfilename,1); 16 a = pr_dataset('mfeat_zer'); 15 a = pr_getdata; 17 16 a = setname(a,'MFEAT Zernike Moments'); -
prdatasets/mnist8.m
r132 r137 13 13 % See also DATASETS, PRDATASETS 14 14 15 % Copyright: R.P.W. Duin 15 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 16 16 % Faculty EWI, Delft University of Technology 17 17 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 19 19 function [a,b] = mnist8 20 20 21 prdatasets(mfilename,1); 22 a = pr_dataset('mnist8'); 21 a = pr_getdata; 23 22 if nargout == 2 24 23 b = a(60001:end,:); -
prdatasets/nist16.m
r132 r137 8 8 % See also DATASETS, PRDATASETS 9 9 10 % Copyright: R.P.W. Duin 10 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 11 11 % Faculty EWI, Delft University of Technology 12 12 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 14 14 function a = nist16 15 15 16 prdatasets(mfilename,1); 17 a = pr_dataset('nist16'); 16 a = pr_getdata; 18 17 a = setname(a,'NIST16 Normalised Digits'); 19 18 -
prdatasets/nist32.m
r132 r137 7 7 % See also DATASETS, PRDATASETS, NIST16 8 8 9 % Copyright: R.P.W. Duin 9 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 10 10 % Faculty EWI, Delft University of Technology 11 11 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 13 13 14 14 function a = nist32(N) 15 15 16 if nargin < 1, N = [0:9]; end 16 a = pr_getdata('http://prtools.tudelft.nl/prdatasets/nist32.mat',1); 17 18 % prdatasets(mfilename,1); 19 % a = pr_dataset('nist32'); 17 a = pr_getdata; 20 18 a = setname(a,'NIST32 Binary Digits'); 21 19 a = selclass(a,N+1); -
prdatasets/pr_dataset.m
r132 r137 9 9 [varargout{:}] = prdataset(varargin{:}); 10 10 end 11 12 end -
prdatasets/pr_download.m
r136 r137 93 93 %% find directory to be used 94 94 if isempty(datname) 95 datname = callername;95 datname = pr_callername; 96 96 dirname = fullfile(fileparts(which(datname)),'data'); 97 97 else … … 212 212 a = setname(a,opt.dsetname); 213 213 else 214 a = setname(a, callername);214 a = setname(a,pr_callername); 215 215 end 216 216 … … 224 224 225 225 226 function ask_download(urlname, size)226 function ask_download(urlname,datsize) 227 227 %% user controlled downloading 228 228 global ASK 229 if isempty(ASK) 230 ASK = true; 231 end 232 233 if ASK 234 if ~isempty(size) && size ~= 0 235 siz = ['(' num2str(size) ' MB)']; 229 230 if ASK && ~isempty(datsize) % ask only if datsize has been set 231 if datsize ~= 0 232 siz = ['(' num2str(datsize) ' MB)']; 236 233 else 237 234 siz = ''; … … 297 294 return 298 295 299 function name = callername300 %%301 [ss,~] = dbstack;302 if length(ss) < 3303 name = [];304 else305 name = ss(3).name;306 end307 308 296 function [a,new] = pr_download_old(url,varargin) 309 297 %% This is the old version of pr_download, to be called from the old … … 448 436 disp('Parsing ...') 449 437 c = mytextscan(fid,strrep(form,'n','s'),del,nhead); 450 a = cell2dset(c,form,misval);438 a = pr_cell2dset(c,form,misval); 451 439 452 440 if ~nosave % don't save if not needed (e.g. called by pr_download_uci) -
prdatasets/pr_getdata.m
r132 r137 10 10 % If given, SIZE (in MByte) is displayed in the request. 11 11 % 12 % If available, the dataset DSET stored in FIELD is returned in OUT. 13 % In case of a datafile DFILE, it is created, if necessary, with given TYPE 14 % and returned in OUT. In case the download was successful but no dataset 15 % or datfile could be created (e.g. because of empty TYPE) OUT is empty, 16 % otherwise an error is generated. 12 % A mat-file returns a structure with fields pointing to stored variables. 13 % If available, the dataset DSET stored in FIELD (default 1) is returned in 14 % OUT. In case of a datafile DFILE, it is created, if necessary, with given 15 % TYPE and returned in OUT. In case the download was successful but no 16 % dataset or datfile could be created (e.g. because of empty TYPE) OUT is 17 % empty, otherwise an error is generated. 17 18 % 18 19 % This is a low-level routine, typically used in COMMAND and not called … … 20 21 % is constucted and returned to the user. 21 22 % 22 % SEE ALSO DATASETS, DATAFILES 23 % SEE ALSO (<a href="http://37steps.com/prhtml/37tools.html">37tools Contents</a>) 24 % DATASETS, DATAFILES 23 25 24 % Copyright: R.P.W. Duin 26 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 25 27 26 28 function out = pr_getdata(varargin) … … 33 35 % dset : becomes full path and name of dataset 34 36 % ddir : becomes full path of dataset 35 name = callername;37 name = pr_callername; 36 38 argin = setdefaults(varargin,[],[],[],[],true); 37 39 [url,size,dset,field,ask] = deal(argin{:}); 40 41 if isempty(url) 42 url = ['http://prtools.tudelft.nl/prdatasets/' name '.mat']; 43 end 38 44 [dummy,uname,ext] = fileparts(url); 39 45 … … 41 47 ddir = pwd; 42 48 else 43 ddir = f ileparts(which(name));49 ddir = fullfile(fileparts(which(name)),'data'); 44 50 end 45 51 … … 117 123 try 118 124 s = prload(dsetmat); 119 catch 125 catch ME 120 126 out = 'error'; 121 127 return … … 143 149 end 144 150 145 function name = callername146 [ss,dummy] = dbstack;147 if length(ss) < 3148 name = [];149 else150 name = ss(3).name;151 end152 151 153 152 -
prdatasets/pr_readdataset.m
r136 r137 11 11 % default is determined from first line, e.g. 'nncc' for two 12 12 % numeric and two categorical features, see SETFEATDOM and 13 % CELL2DSET13 % PR_CELL2DSET 14 14 % NLAB - feature to be interpreted as class label, default []. 15 15 % … … 18 18 % 19 19 %SEE ALSO 20 %DATASETS, SETFEATDOM, CELL2DSET20 %DATASETS, SETFEATDOM, PR_CELL2DSET 21 21 22 22 % Copyright: R.P.W. Duin … … 39 39 end 40 40 c = mytextscan(fid,strrep(form,'n','s'),del,nhead); 41 a = cell2dset(c,form,misval);41 a = pr_cell2dset(c,form,misval); 42 42 if ~isempty(flab) 43 43 a = feat2lab(a,flab); -
prdatasets/ringnorm.m
r132 r137 13 13 % See also DATASETS, PRDATASETS, TWONORM 14 14 15 % Copyright: R.P.W. Duin 15 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 16 16 % Faculty EWI, Delft University of Technology 17 17 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 19 19 function a = ringnorm 20 20 21 prdatasets(mfilename,1); 22 a = pr_dataset('ringnorm'); 21 a = pr_getdata; 23 22 a = setname(a,'Ringnorm Data'); 24 23 -
prdatasets/satellite.m
r132 r137 11 11 % See also DATASETS, PRDATASETS, SOYBEAN1 12 12 13 % Copyright: R.P.W. Duin 13 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 14 14 % Faculty EWI, Delft University of Technology 15 15 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 17 17 function a = satellite 18 18 19 prdatasets(mfilename,1); 20 a = pr_dataset('satellite'); 19 a = pr_getdata; 21 20 a = setname(a,'Satellite dataset'); -
prdatasets/sonar.m
r127 r137 8 8 %metal cylinder and those bounced off a roughly cylindrical rock. 9 9 10 function x= sonar10 function a = sonar 11 11 12 prdatasets(mfilename,1,'http://prtools.tudelft.nl/prdatasets/sonar.dat'); 13 user.desc = 'The Sonar dataset from the undocumented databases from UCI. The task is to train a network to discriminate between sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock.'; 14 user.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/undocumented/connectionist-bench/sonar'; 15 cl = {'mines' 'rocks'}; 16 a = load('sonar.dat'); 17 18 x = pr_dataset(a(:,1:(end-1)),cl(a(:,end))); 19 x = setname(x,'Sonar'); 20 x = setuser(x,user); 21 12 a = pr_loadmatfile; 13 if isempty(a) 14 opt.labfeat = 61; 15 opt.classnames = {'mines' 'rocks'}; 16 opt.desc = 'The Sonar dataset from the undocumented databases from UCI. The task is to train a network to discriminate between sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock.'; 17 opt.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/undocumented/connectionist-bench/sonar'; 18 a = pr_download('http://prtools.tudelft.nl/prdatasets/sonar.dat',[],opt); 19 end 22 20 23 21 return -
prdatasets/soybean1.m
r132 r137 8 8 % See also DATASETS, PRDATASETS, SOYBEAN2 9 9 10 % Copyright: R.P.W. Duin 10 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 11 11 % Faculty EWI, Delft University of Technology 12 12 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 14 14 function a = soybean1 15 15 16 prdatasets(mfilename,1); 17 a = pr_dataset('soybean1'); 16 a = pr_getdata; 18 17 a = setname(a,'Large soybean dataset'); 19 18 a = setlablist(a,char(... -
prdatasets/soybean2.m
r132 r137 8 8 % See also DATASETS, PRDATASETS, SOYBEAN1 9 9 10 % Copyright: R.P.W. Duin 10 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 11 11 % Faculty EWI, Delft University of Technology 12 12 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 14 14 function a = soybean2 15 15 16 prdatasets(mfilename,1); 17 a = pr_dataset('soybean2'); 16 a = pr_getdata; 18 17 a = setname(a,'Small soybean dataset'); 19 18 a = setlablist(a,char(... -
prdatasets/texturel.m
r132 r137 15 15 % See also DATASETS, PRDATASETS, TEXTURET 16 16 17 % Copyright: R.P.W. Duin 17 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 18 18 % Faculty EWI, Delft University of Technology 19 19 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 21 21 function a = texturel 22 22 23 prdatasets(mfilename,4); 24 a = pr_dataset('texturel'); 23 a = pr_getdata; 25 24 a = setname(a,'Texture Learning Set'); -
prdatasets/texturet.m
r132 r137 15 15 % See also DATASETS, PRDATASETS, TEXTUREL 16 16 17 % Copyright: R.P.W. Duin 17 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 18 18 % Faculty EWI, Delft University of Technology 19 19 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 21 21 function a = texturet 22 22 23 prdatasets(mfilename,4); 24 a = pr_dataset('texturet'); 23 a = pr_getdata; 25 24 a = setname(a,'Texture Test Set'); -
prdatasets/twonorm.m
r132 r137 13 13 % See also DATASETS, PRDATASETS, RINGNORM 14 14 15 % Copyright: R.P.W. Duin 15 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 16 16 % Faculty EWI, Delft University of Technology 17 17 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 19 19 function a = twonorm 20 20 21 prdatasets(mfilename,1); 22 a = pr_dataset('twonorm'); 21 a = pr_getdata; 23 22 a = setname(a,'Twonorm Data'); 24 23 -
prdatasets/wine.m
r132 r137 1 1 %WINE Wine recognition dataset 178 objects with 13 features in 3 classes 2 2 % 3 % 3 % A = WINE 4 4 % 5 5 % Load the dataset in A. This dataset is taken from the UCI … … 8 8 % See also DATASETS, PRDATASETS 9 9 10 % Copyright: R.P.W. Duin 10 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com 11 11 % Faculty EWI, Delft University of Technology 12 12 % P.O. Box 5031, 2600 GA Delft, The Netherlands … … 14 14 function a = wine 15 15 16 url = 'http://prtools.tudelft.nl/prdatasets/wine.dat'; 17 %prdatasets(mfilename,1,'http://prtools.tudelft.nl/prdatasets/wine.dat'); 18 user.desc = 'These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.'; 19 user.link = ''; 20 opt.user = user; 21 opt.labfeat = 1; 22 opt.featnames = char(... 16 a = pr_loadmatfile; 17 if isempty(a) 18 opt.delimeter = ','; 19 opt.desc = 'These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.'; 20 opt.labfeat = 1; 21 opt.featnames = char(... 23 22 'alcohol', ... 24 23 'malic acid', ... … … 34 33 'OD280/OD315 of diluted wines', ... 35 34 'proline'); 36 a = pr_download(url,[],opt); 37 38 % %a = load('wine.dat'); 39 % %a = pr_dataset(a(:,2:end),a(:,1)); 40 % a = feat2lab(a,1); 41 % a = setname(a,'Wine recognition data'); 42 % a = setlablist(a,char('cultivar 1','cultivar 2','cultivar 3')); 43 % a = setfeatlab(a,char(... 44 % 'alcohol', ... 45 % 'malic acid', ... 46 % 'ash', ... 47 % 'alcalinity of ash', ... 48 % 'magnesium', ... 49 % 'total phenols', ... 50 % 'flavanoids', ... 51 % 'nonflavanoid phenols', ... 52 % 'proanthocyanine', ... 53 % 'color intensity', ... 54 % 'hue', ... 55 % 'OD280/OD315 of diluted wines', ... 56 % 'proline')); 57 % a = setuser(a,user); 58 35 opt.classnames = {'cultivar 1','cultivar 2','cultivar 3'}; 36 opt.dsetname = 'Wine recognition data'; 37 a = pr_download('http://prtools.tudelft.nl/prdatasets/wine.dat',[],opt); 38 end -
prdatasets/x80.m
r132 r137 22 22 % P.O. Box 5031, 2600 GA Delft, The Netherlands 23 23 24 function a = x80 ;24 function a = x80 25 25 26 prdatasets('80x',1); 27 a = pr_dataset('80x'); 26 a = pr_getdata('http://prtools.tudelft.nl/prdatasets/80x.mat',1); 28 27 a = setname(a,'80X Dataset'); 29 28 a = setlablist(a,char('8','0','X'));
Note: See TracChangeset
for help on using the changeset viewer.