Changeset 83 for prdatasets/Contents.m
- Timestamp:
- 08/23/13 21:17:56 (11 years ago)
- Location:
- prdatasets
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
prdatasets
- Property svn:ignore
-
old new 1 1 *.dat 2 glass.mat2 *.mat
-
- Property svn:ignore
-
prdatasets/Contents.m
r80 r83 1 % PRDATASETS: PRTools5 Pattern Recognition Datasets2 % Version 2.0 6-Aug-20131 % PRDATASETS: Pattern Recognition Datasets in PRTools format 2 % Version 2.03 23-Aug-2013 3 3 % 4 %The following datasets can be loaded by commands like A = DATASET_NAME. 5 %Most datasets have options to select classes or objects. 6 %(m: #samples, k: #features c:#classes) 4 %Feature based labeled datasets 5 %------------------------------ 6 %name objects feats classes 7 %x80 45 8 3 radial distances of characters 8 %arrhythmia 420 278 2 presence or absence of cardia arrhythmia 9 %auto_mpg 398 6 2 car/miles-per-gallon 10 %malaysia 291 8 20 segment features in utility symbols 11 %biomed 194 5 2 various patient indicators 12 %breast 683 9 2 Wisconsion breast cancer dataset 13 %cbands 12000 30 24 chromosome banding patterns 14 %chromo 1143 8 24 chromosome blob features 15 %diabetes 768 8 2 Pima Indians Diabetes Database 16 %ecoli 272 7 3 protein localisation sites 17 %glass 214 9 4 glass types from chemical components 18 %heart 297 13 2 heart disease dataset 19 %imox 192 8 4 radial distances of characters 20 %ionosphere 351 34 2 radar data 21 %iris 150 4 3 Fisher's Iris dataset 22 %liver 345 6 2 liver disorder 23 %satellite 6435 36 6 spectral data 24 %sonar 208 60 2 rock / metal sonar features 25 %soybean1 266 35 19 large Soybeans 26 %soybean2 136 35 4 small Soybeans 27 %spirals 194 2 2 spirals 28 %twonorm 7400 20 2 Leo Breiman's two normal example. 29 %ringnorm 7400 20 2 Leo Breiman's ringnorm example. 30 %wine 178 13 3 wine recognition 31 %mfeat_fac 2000 216 10 face features in digits dataset 32 %mfeat_fou 2000 76 10 Fourier features in digits dataset 33 %mfeat_kar 2000 64 10 Karhunen Loeve features in digits dataset 34 %mfeat_pix 2000 240 10 pixel features in digits dataset 35 %mfeat_zer 2000 53 10 Zernike moments in digits dataset 36 %mfeat_mor 2000 6 10 morphological features in digits dataset 7 37 % 8 % name m k c description38 %Multi-band images (pixels are objects, bands are features) 9 39 %---------------------------------------------------------- 10 %x80 45 8 3 radial distances of characters 11 %arrhythmia 420 278 2 presence or absence of cardia arrhythmia 12 %auto_mpg* 398 6 2 Car/miles-per-gallon 13 %malaysia 291 8 20 segment features in utility symbols 14 %biomed 194 5 2 15 %breast* 683 9 2 Wisconsion breast cancer dataset 16 %cbands 12000 30 24 chromosome banding patterns 17 %chromo 1143 8 24 chromosome blob features 18 %diabetes* 768 8 2 Pima Indians Diabetes Database 19 %ecoli* 272 7 3 protein localisation sites 20 %glass 214 9 4 glass types from chemical components 21 %heart* 297 13 2 heart disease dataset 22 %imox 192 8 4 radial distances of characters 23 %ionosphere* 351 34 2 24 %iris 150 4 3 Fisher's Iris dataset 25 %liver* 345 6 2 liver disorder 26 %satellite* 6435 36 6 27 %sonar* 208 60 2 rock / metal sonar features 28 %soybean1* 266 35 19 large Soybeans 29 %soybean2* 136 35 4 small Soybeans 30 %spirals 194 2 2 spirals 31 %twonorm 7400 20 2 Leo Breiman's two normal example. 32 %ringnorm 7400 20 2 Leo Breiman's ringnorm example. 33 %wine* 178 13 3 wine recognition 34 %mfeat-fac 2000 216 10 Face features in digits dataset 35 %mfeat-fou 2000 76 10 Fourier features in digits dataset 36 %mfeat-kar 2000 64 10 Karhunen Loeve features in digits dataset 37 %mfeat-pix 2000 240 10 Pixel features in digits dataset 38 %mfeat-zer 2000 53 10 Zernike moments in digits dataset 39 %mfeat-mor 2000 6 10 Morphological features in digits dataset 40 %name pixels bands classes 41 %emim 128*128 8 1 A seto of 5 8-band EM images 42 %lena 256*256 3 1 full-color image 43 %texturel 5*128*128 7 5 texture features for 5 different texture images 44 %texturet 256*256 7 5 composite texture image 40 45 % 41 % Multi-band images (pixels are objects, bands are features) 42 % 43 %emim31 128*128 8 1 8-band EM image 44 %emim32 128*128 8 1 8-band EM image 45 %emim33 128*128 8 1 8-band EM image 46 %emim34 128*128 8 1 8-band EM image 47 %emim37 256*256 8 1 8-band EM image 48 %lena 256*256 3 1 full-color image 49 %texturel 5*128*128 7 5 texture features for 5 different texture images 50 %texturet 256*256 7 5 composite texture image 51 % 52 % Image datasets (pixels are features, images are objects) 53 % 54 %kimia 216 64*64 18 resampled (64*64) Kimia dataset of silhouettes 55 %nist32 5000 32*32 10 Resampled Nist digits 56 %nist16 2000 16*16 10 Normalized Nist digits 57 58 % Copyright: R.P.W. Duin, r.p.w.duin@prtools.org 59 % Faculty EWI, Delft University of Technology 60 % P.O. Box 5038, 2600 GA Delft, The Netherlands 46 %Image datasets (pixels are features, images are objects) 47 %-------------------------------------------------------- 48 %name images pixels classes 49 %kimia 216 64*64 18 resampled Kimia dataset of silhouettes 50 %nist32 5000 32*32 10 Resampled Nist digits 51 %nist16 2000 16*16 10 Normalized Nist digits
Note: See TracChangeset
for help on using the changeset viewer.