Changeset 142 for prdatasets/Contents.m
- Timestamp:
- 01/05/20 23:22:59 (5 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
prdatasets/Contents.m
r141 r142 1 1 % PRDATASETS: Pattern Recognition Datasets in PRTools format 2 % Version 3.0 22-Dec-20192 % Version 3.0.1 6-Jan-2020 3 3 % 4 4 %Feature based labeled datasets 5 5 %------------------------------ 6 %name objects feats classes 7 %x80 45 8 3 radial distances of characters 8 %arrhythmia 420 278 2 presence or absence of cardia arrhythmia 9 %auto_mpg 398 6 2 car/miles-per-gallon 10 %biomed 194 5 2 various patient indicators 11 %breast 683 9 2 Wisconsion breast cancer dataset 12 %car 1728 6 4 Car evaluation database 13 %cbands 12000 30 24 chromosome banding patterns 14 %chromo 1143 8 24 chromosome blob features 15 %diabetes 768 8 2 Pima Indians Diabetes Database 16 %ecoli 272 7 3 protein localisation sites 17 %glass 214 9 4 glass types from chemical components 18 %heart 297 13 2 heart disease dataset 19 %hepatitis 112 19 2 hepatitis database 20 %imox 192 8 4 radial distances of characters 21 %ionosphere 351 34 2 radar data 22 %iris 150 4 3 Fisher's Iris dataset 23 %liver 345 6 2 liver disorder 24 %malaysia 291 8 20 segment features in utility symbols 25 %satellite 6435 36 6 spectral data 26 %sonar 208 60 2 rock / metal sonar features 27 %soybean1 266 35 19 large Soybeans 28 %soybean2 136 35 4 small Soybeans 29 %twonorm 7400 20 2 Leo Breiman's two normal example. 30 %ringnorm 7400 20 2 Leo Breiman's ringnorm example. 31 %wine 178 13 3 wine recognition 32 %mfeat_fac 2000 216 10 face features in digits dataset 33 %mfeat_fou 2000 76 10 Fourier features in digits dataset 34 %mfeat_kar 2000 64 10 Karhunen Loeve features in digits dataset 35 %mfeat_pix 2000 240 10 pixel features in digits dataset 36 %mfeat_zer 2000 53 10 Zernike moments in digits dataset 37 %mfeat_mor 2000 6 10 morphological features in digits dataset 38 %mfeat 2000 649 10 combined features of the mfeat datasets 6 %name objects feats classes 7 %abalone 4177 8 28 Abalone Age Estimation 8 %adult 45222 14 2 Census Income Original 9 %annealing 898 9 5 Steel Annealing Data 10 %arcene 200 10000 2 Arcene Mass Spectra 11 %arrhythmia 452 275 13 Arrhythmia normal 12 %audiology 226 63 24 Standardized Audiology 13 %australian_sl 690 14 2 Statlog Australian Credit 14 %auto_mpg 398 6 2 Auto MPG 15 %balance_scale 625 4 5 Balance Scale 16 %balloons 76 4 2 Balloons 17 %biomed 194 5 2 Biomedical Data 18 %breast 683 9 2 Breast Wisconsin 19 %car 1728 6 4 Car Evaluation 20 %cbands 12000 30 24 Chromosome Bands 21 %census 142521 41 2 Census Income KDD 22 %chromo 1143 8 24 Chromosome Features 23 %cmc 1473 9 3 Contraceptive Method Choice 24 %connect4 67557 42 3 Connect-4 Dataset 25 %credit 690 15 2 Credit Approval Dataset 26 %cylinderbands 540 39 2 Cylinder Bands Dataset 27 %diabetes 768 8 2 Diabetes Dataset 28 %ecoli 336 7 8 Ecoli Dataset 29 %flowcyto 612 254 3 Flow Cytometry 1 30 %german_num_sl 1000 24 2 Statlog German Credit Num 31 %german_sl 1000 20 2 Statlog German Credit 32 %glass 214 9 4 Glass Identification Dataset 33 %haberman 306 3 2 Haberman''s Survival 34 %heart 297 13 2 Heart Cleveland 35 %heart_sl 270 13 2 Statlog Heart 36 %hepatitis 112 19 2 Hepatitis Data Set 37 %imox 192 8 4 IMOX Characters 38 %imsegment 2310 19 7 Image Segmentation 39 %imsegment_sl 2310 19 7 Statlog Image Segmentation 40 %ionosphere 351 34 2 Ionosphere Dataset 41 %iris 150 4 3 Iris Dataset 42 %isolet 7797 617 26 Isolet 43 %letter 20000 16 16 Letter Recognition 44 %liver 345 6 2 Liver disorder dataset 45 %magic04 19020 10 2 Magic Gamma Telescope 46 %malaysia 291 8 20 Malaysia Data 47 %mammograph 961 5 2 Mammographic Mass 48 %mfeat 2000 649 10 MFEAT Combined Features 49 %mfeat_fac 2000 216 10 MFEAT Face Features 50 %mfeat_fou 2000 76 10 MFEAT Fourier Features 51 %mfeat_kar 2000 64 10 MFEAT KL Features 52 %mfeat_mor 2000 6 10 MFEAT Morphological Features 53 %mfeat_pix 2000 240 10 MFEAT Pixel Features 54 %mfeat_zer 2000 47 10 MFEAT Zernike Moments 55 %musk1 476 166 2 Musk version 1 56 %musk2 6598 166 2 Musk version 2 57 %optdigits 5620 64 10 Optical Digit Recognition 58 %pageblocks 5473 10 5 Page Blocks 59 %pendigits 10992 16 10 Pen Based Handwritten Digits 60 %ringnorm 7400 20 2 Ringnorm Data 61 %satellite 6435 36 6 Satellite dataset 62 %satellite_sl 6435 36 6 Statlog Satellite 63 %shuttle_sl 58000 9 7 Statlog Shuttle 64 %sonar 208 60 2 Sonar dataset 65 %soybean1 266 35 19 Large soybean dataset 66 %soybean2 136 35 4 Small soybean dataset 67 %spambase 4601 57 2 Spambase 68 %spectf 80 44 2 Spectf Heart 69 %spectrometer 531 101 9 Low Resolution Spectrometer 70 %teachassist 151 5 3 Teaching Assistant Evaluation 71 %tic_tac_toe 958 9 2 Tic Tac Toe 72 %twonorm 7400 20 2 Twonorm Data 73 %waveform1 5000 21 3 Simple Waveform Data 74 %waveform2 5000 40 3 Advanced Waveform Data 75 %wine 178 13 3 Wine Recognition 76 %x80 45 8 3 80X Characters 77 %yeast 1484 8 10 Protein Localization 78 %zoo 101 16 7 Animal Recognition 39 79 % 40 80 %Multi-band images (pixels are objects, bands are features) … … 43 83 %emim 128*128 8 1 A seto of 5 8-band EM images 44 84 %lena 256*256 3 1 full-color image 45 %texturel 5*128*128 7 5 texture features for 5 different textureimages85 %texturel 5*128*128 7 5 texture features of 5 different images 46 86 %texturet 256*256 7 5 composite texture image 47 87 % 48 88 %Image datasets (pixels are features, images are objects) 49 89 %-------------------------------------------------------- 50 %name images pixels classes 51 %kimia 216 64*64 18 resampled Kimia dataset of silhouettes 52 %mnist8 70000 8*8 10 normalized MNIST digits 53 %nist16 2000 16*16 10 normalized NIST digits 54 %nist32 5000 32*32 10 resemapled MNIST digits 90 %name images pixels classes 91 %kimia 216 64*64 18 resampled Kimia dataset of silhouettes 92 %mnist 70000 28*28 10 MNIST8 Reduced Digits 93 %mnist8 70000 8*8 10 MNIST digits 94 %nist16 2000 16*16 10 normalized NIST digits 95 %nist32 5000 32*32 10 resemapled MNIST digits 96 % 97 %Most datasets are based on the <a 98 %href="http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart">UCI Machine Learning Repository.</a>
Note: See TracChangeset
for help on using the changeset viewer.