[83] | 1 | % PRDATASETS: Pattern Recognition Datasets in PRTools format |
---|
| 2 | % Version 2.03 23-Aug-2013 |
---|
[80] | 3 | % |
---|
[83] | 4 | %Feature based labeled datasets |
---|
| 5 | %------------------------------ |
---|
| 6 | %name objects feats classes |
---|
| 7 | %x80 45 8 3 radial distances of characters |
---|
| 8 | %arrhythmia 420 278 2 presence or absence of cardia arrhythmia |
---|
| 9 | %auto_mpg 398 6 2 car/miles-per-gallon |
---|
| 10 | %malaysia 291 8 20 segment features in utility symbols |
---|
| 11 | %biomed 194 5 2 various patient indicators |
---|
| 12 | %breast 683 9 2 Wisconsion breast cancer dataset |
---|
| 13 | %cbands 12000 30 24 chromosome banding patterns |
---|
| 14 | %chromo 1143 8 24 chromosome blob features |
---|
| 15 | %diabetes 768 8 2 Pima Indians Diabetes Database |
---|
| 16 | %ecoli 272 7 3 protein localisation sites |
---|
| 17 | %glass 214 9 4 glass types from chemical components |
---|
| 18 | %heart 297 13 2 heart disease dataset |
---|
| 19 | %imox 192 8 4 radial distances of characters |
---|
| 20 | %ionosphere 351 34 2 radar data |
---|
| 21 | %iris 150 4 3 Fisher's Iris dataset |
---|
| 22 | %liver 345 6 2 liver disorder |
---|
| 23 | %satellite 6435 36 6 spectral data |
---|
| 24 | %sonar 208 60 2 rock / metal sonar features |
---|
| 25 | %soybean1 266 35 19 large Soybeans |
---|
| 26 | %soybean2 136 35 4 small Soybeans |
---|
| 27 | %twonorm 7400 20 2 Leo Breiman's two normal example. |
---|
| 28 | %ringnorm 7400 20 2 Leo Breiman's ringnorm example. |
---|
| 29 | %wine 178 13 3 wine recognition |
---|
| 30 | %mfeat_fac 2000 216 10 face features in digits dataset |
---|
| 31 | %mfeat_fou 2000 76 10 Fourier features in digits dataset |
---|
| 32 | %mfeat_kar 2000 64 10 Karhunen Loeve features in digits dataset |
---|
| 33 | %mfeat_pix 2000 240 10 pixel features in digits dataset |
---|
| 34 | %mfeat_zer 2000 53 10 Zernike moments in digits dataset |
---|
| 35 | %mfeat_mor 2000 6 10 morphological features in digits dataset |
---|
[80] | 36 | % |
---|
[83] | 37 | %Multi-band images (pixels are objects, bands are features) |
---|
[80] | 38 | %---------------------------------------------------------- |
---|
[83] | 39 | %name pixels bands classes |
---|
| 40 | %emim 128*128 8 1 A seto of 5 8-band EM images |
---|
| 41 | %lena 256*256 3 1 full-color image |
---|
| 42 | %texturel 5*128*128 7 5 texture features for 5 different texture images |
---|
| 43 | %texturet 256*256 7 5 composite texture image |
---|
[80] | 44 | % |
---|
[83] | 45 | %Image datasets (pixels are features, images are objects) |
---|
| 46 | %-------------------------------------------------------- |
---|
| 47 | %name images pixels classes |
---|
| 48 | %kimia 216 64*64 18 resampled Kimia dataset of silhouettes |
---|
[117] | 49 | %mnist8 70000 8*8 10 Normalized MNIST digits |
---|
| 50 | %nist16 2000 16*16 10 Normalized NIST digits |
---|