- Files:
-
- 9 added
- 7 edited
Legend:
- Unmodified
- Added
- Removed
-
/distools/clevald.m
r20 r30 248 248 J = JR(1:nj); 249 249 if isempty(repsize) 250 R = J R;250 R = J; 251 251 elseif repsize < 1 252 252 R = JR(1:ceil(repsize*nj)); -
/distools/genddat.m
r20 r30 60 60 function [DTR,DTE,Itr,Ite] = genddat(D,m,k); 61 61 62 if nargin < 3, k = []; end 63 64 % If input is a cell array of datasets, apply this procedure 65 % to the individual datasets. 66 if (iscell(D)) 67 A = cell(size(D)); 68 B = cell(size(D)); 69 IA = cell(size(D)); 70 IB = cell(size(D)); 71 seed = randreset; 72 for j=1:length(D(:)) 73 randreset(seed); 74 [DTR{j},DTE{j},Itr{j},Ite{j}] = feval(mfilename,D{j},m,k); 75 end 76 return; 77 end 78 79 80 62 81 [n,nk,c] = getsize(D); 63 82 nlab = getnlab(D); 64 83 discheck(D,[],1); % allow for similarities 65 84 66 if nargin < 3, 67 k = []; 68 else 85 if ~isempty(k) 69 86 if length(k) == 1 70 87 k = k*ones(1,c); -
/distools/pe_em.m
r20 r30 39 39 % ALF of the total variance is preserved for ALF in (0,1). The resulting X is found 40 40 % by D*W. The signature of the obtained PE space (numbers of positive and negative 41 % directions) can be found by PE_SIG(W). The spectrum of the obtained space42 % can be found by PE_SPEC(W).41 % directions) can be found by GETDATA(W,'sig'). The spectrum of the obtained space 42 % can be found by GETDAT(W,'eval'). 43 43 % 44 44 % SEE ALSO 45 % MAPPINGS, DATASETS, AUGPSEM, PCA, PE_PCA, PE_SPEC,GETSIG, SETSIG45 % MAPPINGS, DATASETS, AUGPSEM, PCA, GETSIG, SETSIG 46 46 % 47 47 % LITERATURE -
/distools/protselfd.m
r20 r30 5 5 % 6 6 % INPUT 7 % D Dataset, squaredissimilarity matrix7 % D Dataset, dissimilarity matrix 8 8 % K Integer, desired number of prototypes 9 % PAR 'LOO' - leave-one-out option. This should be used if 10 % the objects are related to themselves. If D is not square, 11 % it is assumed that the first sets of objects in columns and 12 % rows match. 13 % 'ALL' - use all objects (default). 9 % PAR 'SUPER' supervised selection using 1NN error on prototypes. 10 % 'LOO' - supervised selection using leave-one-out error estimation. 11 % 'MAXDIST' - unsupervised selection minimizing the maximum 12 % distance to the nearest prototype. 13 % 'MEANDIST' - unsupervised selection minimizing the average 14 % distance to the nearest prototype. 14 15 % 15 16 % OUTPUT 16 17 % W Selection mapping ('feature selection') 17 18 % E Error stimate as a function of number of selected prototypes 18 % (only reliable for prototype sizes >= class size) 19 % KOPT Estimate for best size in avoiding peaking 19 % (for supervised selection only reliable for prototype sizes >= class size) 20 % KOPT Estimate for best size in avoiding peaking 21 % (supervised selection only) 20 22 % 21 23 % DESCRIPTION 22 % This procedure for optimizing the representation set of a 23 % dissimilarity matrix is based on a greedy, forward selection of 24 % prototypes using the leave-one-out error estimate of the 1NN rule 25 % as a criterion. As this is computed on the given distances in 26 % D, the procedure is based on sorting and counting only and is 27 % thereby fast. In case K=1 just a single prototype has to be returned, 28 % but computing the 1NN error is not possible as all objects are assigned 29 % to the same class. In that case the centre object of the largest class 30 % will be returned. 31 % 32 % Note that the search continues untill K prototypes are found. 33 % This might be larger than desired due to peaking (curse of 34 % dimensionality, overtraining). Therefor an estimate for the 35 % optimal number of prototype is returned in KOPT. 36 % 37 % The prototype selection may be applied by C = B*W(:,1:KSEL), 38 % in which B is a dissimilarity matrix based on the same 39 % representation set as A (e.g. A itself) and C is a resulting 40 % dissimilarity matrix in which the KSEL (e.g. KOPT) best prototypes 41 % are selected. 24 % This procedure for optimizing the representation set of a dissimilarity 25 % matrix is based on a greedy, forward selection of prototypes. 26 % 27 % In case of supervised selection D should be a labeled dataset with 28 % prototype labels stored as feature labels. The 1NN error to the nearest 29 % prototype is used as a criterion. In case of leave-one-out error 30 % estimation it is assumed that the first objects in D correspond with the 31 % prototypes. 32 % 33 % In case K=1 just a single prototype has to be returned, but computing the 34 % 1NN error is not possible as all objects are assigned to the same class. 35 % In that case the centre object of the largest class will be returned. 36 % 37 % Note that the search continues untill K prototypes are found. This might 38 % be larger than desired due to peaking (overtraining). Therefor an 39 % estimate for the optimal number of prototype is returned in KOPT. 40 % 41 % The prototype selection may be applied by C = B*W(:,1:KSEL), in which B 42 % is a dissimilarity matrix based on the same representation set as A (e.g. 43 % A itself) and C is a resulting dissimilarity matrix in which the KSEL 44 % (e.g. KOPT) best prototypes are selected. 45 % 46 % In case of unsupervised selection the maximum or the mean distances to 47 % the nearest prototype are minimized. These criteria are the same as used 48 % in the KCENTRE and KMEDIOD cluster procedures. 42 49 % 43 50 % REFERENCE … … 55 62 % 56 63 57 function [R,e,D,J,nlab,clab] = protselfd(D,ksel,par,J,e,nlab,clab) 58 59 if nargin < 2, ksel = []; end 60 if nargin < 3 | isempty(par), par = 'all'; end 61 62 if nargin < 4 % user call 63 64 if nargin < 1 | isempty(D) % allow for D*protselfd([],pars) 65 R = mapping(mfilename,'untrained',{ksel,par}); 64 function [R,e,D] = protselfd(D,ksel,type) 65 66 if nargin < 2, ksel = []; end 67 if nargin < 3, type = []; end 68 69 if nargin < 1 || isempty(D) % allow for D*protselfd([],pars) 70 R = mapping(mfilename,'untrained',{ksel,type}); 66 71 R = setname(R,'Forward Prototype Sel'); 67 72 return 68 73 end 69 74 75 switch lower(type) 76 case {'loo','LOO','super','SUPER','',''} 77 [R,e,D,J,nlab,clab] = protselfd(D,ksel,type); 78 case {'maxdist','meandist'} 79 R = protselfd_unsuper(D,ksel,type); 80 otherwise 81 error('Unknown selection type') 82 end 83 84 return 85 86 87 function [R,e,D,J,nlab,clab] = protselfd_super_init(D,ksel,par) 88 % this routine takes care of the initialisation of supervised selection 89 90 isdataset(D); 70 91 [m,k,c] = getsize(D); 71 92 if isempty(ksel), ksel = k; end … … 99 120 % this will be a deep recursive call !!! 100 121 prwaitbar(ksel,'Forward prototype selection') 101 [R,e,D,J,nlab,clab] = protselfd (D,ksel,R,J,e,nlab,clab);122 [R,e,D,J,nlab,clab] = protselfd_super(D,ksel,R,J,e,nlab,clab); 102 123 prwaitbar(0); 103 124 end … … 110 131 D = floor((Jopt(end)+Jopt(1))/2); 111 132 112 % done! 113 114 else % internal call, parameters may have another meaning! 115 116 R = par; % prototypes sofar 133 return 134 135 function [R,e,D,J,nlab,clab] = protselfd_super(D,ksel,R,J,e,nlab,clab) 136 117 137 [m,k,c] = getsize(D); 118 138 d = +D; … … 135 155 de = sum(ds); 136 156 % if better, use it 137 if ee < emin | ((ee == emin)& (de < dmin))157 if ee < emin || ((ee == emin) && (de < dmin)) 138 158 emin = ee; 139 159 jmin = j; … … 145 165 end 146 166 147 if emin <= e(r) | 1 % we even continue if emin increases due to peaking167 if emin <= e(r) || 1 % we even continue if emin increases due to peaking 148 168 e(r+1) = emin; 149 169 R = Rmin; 150 170 if (r+1) < ksel 151 [R,e,D,J,nlab,clab] = protselfd (D,ksel,R,Jmin,e,nlab,clab);171 [R,e,D,J,nlab,clab] = protselfd_super(D,ksel,R,Jmin,e,nlab,clab); 152 172 end 153 173 end 154 174 175 return 176 177 %PROTSELFD_UNSUPER Forward prototype selection 178 % 179 % N = PROTSELFD_UNSUPER(D,P,CRIT) 180 % 181 % INPUT 182 % D Square dissimilarity matrix, zeros on diagonal 183 % P Number of prototypes to be selected 184 % CRIT 'dist' or 'centre' 185 % 186 % OUTPUT 187 % N Indices of selected prototypes 188 % 189 % DESCRIPTION 190 % Sort objects given by square dissim matrix D using a greedy approach 191 % such that the maximum NN distance from all objects (prototypes) 192 % to the first K: max(min(D(:,N(1:K),[],2)) is minimized. 193 % 194 % This routines tries to sample the objects such that they are evenly 195 % spaced judged from their dissimilarities. This may be used as 196 % initialisation in KCENTRES. It works reasonably, but not very good. 197 % 198 % SEE ALSO 199 % KCENTRES 200 201 % Copyright: R.P.W. Duin, r.p.w.duin@prtools.org 202 % Faculty EWI, Delft University of Technology 203 % P.O. Box 5031, 2600 GA Delft, The Netherlands 204 205 function N = protselfd_unsuper(d,p,crit) 206 207 d = +d; 208 [m,k] = size(d); 209 if isempty(crit), crit = 'max'; end 210 if nargin < 2 || isempty(p), p = k; end 211 L = 1:k; 212 N = zeros(1,p); 213 switch crit 214 case 'maxdist' 215 [~,n] = min(max(d)); % this is the first (central) prototype 216 case 'meandist' 217 [~,n] = min(mean(d)); % this is the first (central) prototype 155 218 end 219 e = d(:,n); % store here the distances to the nearest prototype (dNNP) 220 f = min(d,repmat(e,1,k)); % replace distances that are larger than dNNP by dNNP 221 N(1) = n; % ranking of selected prototypes 222 L(n) = []; % candidate prototypes (all not yet selected objects) 223 224 for j=2:p % extend prototype set 225 switch crit % select the next prototype out of candidates in L 226 case 'maxdist' 227 [~,n] = min(max(f(:,L))); 228 case 'meandist' 229 [~,n] = min(mean(f(:,L))); 230 end 231 e = min([d(:,L(n)) e],[],2); % update dNNP 232 f = min(d,repmat(e,1,k)); % update replacement of distances that are larger 233 % than dNNP by dNNP 234 N(j) = L(n); % update list of selected prototypes 235 L(n) = []; % update list of candidate prototypes 236 end 237 -
/prextra/Contents.m
r20 r30 24 24 %rbsvc Automatic radial basis SVC 25 25 %kannc Fast k-nn classifier for large datasets by annquery 26 %dectreec Decision tree (fast, because it's using compiled code) 27 %randomforestc Random Forest (fast, because it's using compiled code) 26 28 % 27 29 %auc error under the curve estimator -
/prextra/prcontent2html.m
r20 r30 1 1 %PRCONTENT2HTML Construct HTML file from PRTools Contents file 2 2 % 3 % PRCONTENT2HTML(NAME,RECREATE) 4 5 6 function out = prcontent2html(name,recreate) 7 8 if nargin < 2, recreate = 0; end 3 % PRCONTENT2HTML(NAME,RECREATE,HTMLDIR) 4 5 6 function out = prcontent2html(name,recreate,htmldir) 7 8 if nargin < 3, htmldir = cd; end 9 if nargin < 2 | isempty(recreate), recreate = 0; end 9 10 10 11 if exist([name '/Contents.m']) == 2 … … 63 64 pp = fileparts(file); 64 65 [pp2,subdir] = fileparts(pp); 65 s = [s '<tr> <td width="100" valign="top">' commandrefs(tok,recreate,subdir ) '</td>'];66 s = [s '<tr> <td width="100" valign="top">' commandrefs(tok,recreate,subdir,htmldir) '</td>']; 66 67 s = [s '<td>' posttok '</td></tr>']; 67 68 end … … 69 70 s = [s '</table>']; 70 71 s = [s '</p></body></html>']; 71 writf([ name'.html'],s);72 writf([fullfile(htmldir,name) '.html'],s); 72 73 if nargout > 0 73 74 out = s; … … 130 131 return 131 132 132 function s = commandrefs(r,recreate,subdir )133 function s = commandrefs(r,recreate,subdir,htmldir) 133 134 if nargin < 2, recreate = 0; end 134 135 if regexp(r,'^ *$') … … 143 144 end 144 145 145 if exist( htmlname,'file') == 2146 if exist(fullfile(htmldir,htmlname),'file') == 2 146 147 s = [s '<a href="' htmlname '">' tok '</a>, ']; 147 148 elseif isempty(tok) | regexp(tok,'^ *') -
/prextra/prhelp2html.m
r20 r30 1 1 %PRHELP2HTML Construct HTML file from help part of PRTools routine 2 2 % 3 % S = PRHELP2HTML(COMMAND,RECREATE,SUBDIR) 3 % S = PRHELP2HTML(COMMAND,RECREATE,HTMLDIR) 4 % S = PRHELP2HTML(TOOLBOX,RECREATE,HTMLDIR) 4 5 % 5 6 % INPUT 6 7 % COMMAND String with PRTools command, default: all prtools m-files 8 % TOOLBOX Name of the toolbox to be handled, default PRTOOLS. 9 % Toolbox should be in the bath in in this call the last 10 % character should be a '/'. 7 11 % RECREATE 0/1 flag indicating whether non-existing references 8 12 % in the SEE ALSO section should be created as well 9 % SUBDIR String with desired sub-directory in which the HTML13 % HTMLDIR String with desired directory in which the HTML 10 14 % file should be stored 11 15 % … … 56 60 57 61 58 59 60 function out = prhelp2html(name,recreate,subdir) 61 62 if nargin < 3, subdir = []; end 63 if nargin < 2 || isempty(recreate), recreate = 0; end 64 if nargin < 1 65 run_all_files(mfilename); 66 s = prcontent2html('prtools'); 62 % BEFORE YOU START TO DEBUG, READ THIS 63 % This routine was original intended to work on the prtools dir only. 64 % Later it was somewhat changed in order to handle files in prdatasets, 65 % prdatafiles and possibly distools and dd_tools as well. Only for 66 % prtools the subdir structure (with the @dataset, @datafile, @mapping 67 % sub dirs) is recognized, and only if the first parameter, COMMAND, is 68 % empty. 69 % 70 % The Contents files have a special layout. It is handled by prcontent2html 71 % in case of PRTools, but for other toolboxes it most likely doesn't work. 72 % 73 % The formatting rules of the PRTools help are strict. Don't try to relax 74 % them in the below code, but change the help-text if you are not satisfied 75 % with the result. Especially avoid ' ' (double spaces) where they are not 76 % needed as the conversion jumps into a table-mode as soon as they are 77 % encountered. 78 % 79 % Bob Duin, April 2011 80 81 function out = prhelp2html(name,recreate,htmldir) 82 83 if nargin < 3, htmldir = cd; end 84 if nargin < 2 | isempty(recreate), recreate = 0; end 85 if nargin < 1 | isempty(name) % default is prtools 86 dirs = {'ldc','dataset','datafile','mapping'}; 87 run_all_files(mfilename,dirs,htmldir); 88 s = prcontent2html('prtools',[],htmldir); 67 89 if nargout > 0 68 90 out = s; 69 91 end 70 92 return; 93 else 94 if strcmp(name(end),'/') & exist(name(1:end-1),'dir') == 7 95 name = name(1:end-1); 96 dirs = {fullfile(name,'Contents.m')}; 97 run_all_files(mfilename,dirs,htmldir); 98 s = prcontent2html(name,[],htmldir); % does not work usually 99 if nargout > 0 100 out = s; 101 end 102 return 103 end 71 104 end 72 105 … … 78 111 end 79 112 %[pp,name] = fileparts(file); 80 if isempty( subdir)81 [xx, subdir] = fileparts(fileparts(file));82 end 83 if isempty(strmatch(subdir,char('prtools','@dataset','@datafile','@mapping'),'exact'))84 % disp([name ' Not PRTools'])85 out = [];86 return87 end113 if isempty(htmldir) 114 [xx,htmldir] = fileparts(fileparts(file)); 115 end 116 % if isempty(strmatch(subdir,char('prtools','@dataset','@datafile','@mapping'),'exact')) 117 % % disp([name ' Not PRTools']) 118 % out = []; 119 % return 120 % end 88 121 89 122 disp(file) … … 295 328 state = 'seealso'; 296 329 if ~single 297 s = [s commandrefs(posttok,recreate )];330 s = [s commandrefs(posttok,recreate,htmldir)]; 298 331 end 299 332 else % undefined lines 300 333 if examplestate 301 334 if length(u) > 3 && strcmpi(u(1:4),'see ') 302 s = [s '</p>' commandrefs(u(5:end),recreate ) '<p>'];335 s = [s '</p>' commandrefs(u(5:end),recreate,fileparts(htmldir)) '<p>']; 303 336 else 304 337 s = [s strrep(code(strrep(r,' ','#$!'),0,3),'#$!',' ') '<br>']; … … 316 349 s = [s '<strong><font size="4">' findmakecode(u(3:end)) '</font></strong><br>']; 317 350 else 318 s = [s commandrefs(u,recreate )];351 s = [s commandrefs(u,recreate,htmldir)]; 319 352 end 320 353 elseif tabstartspace && tabstate && (colpos1 > colpos0) ... … … 377 410 s = [s '</p>' content_manual '</body></html>']; 378 411 [qq,name] = fileparts(name); % allows for names like dataset/show 379 if exist(['./' subdir],'file') ~= 7 380 mkdir(subdir); 381 end 382 writf([fullfile(subdir,name) '.html'],s); 412 % if exist(fullfile(htmldir,name),'file') == 2 413 % htmlname = fullfile(htmldir,name); 414 % else 415 % %htmlname = [tok '.html']; 416 % file = which(name); 417 % pp = fileparts(file); 418 % [qq,subdir] = fileparts(pp); 419 % htmldir = fullfile(fileparts(htmldir),subdir); 420 % htmlname = fullfile(htmldir,name); 421 % end 422 423 if exist([htmldir],'file') ~= 7 424 mkdir(htmldir); 425 end 426 writf([fullfile(htmldir,name) '.html'],s); 383 427 disp([int2str(recreate) ' ' name ' html created']) 384 428 if nargout > 0 … … 456 500 end 457 501 458 function s = commandrefs(r,recreate) 459 if nargin < 2, recreate = 0; end 502 function s = commandrefs(r,recreate,htmldir) 503 if nargin < 3, htmldir = cd; end 504 if nargin < 2 | isempty(recreate), recreate = 0; end 460 505 s = []; 461 506 r_debug = r; … … 467 512 pp = fileparts(file); 468 513 [qq,subdir] = fileparts(pp); 469 htmlname = fullfile(subdir,htmlname); 470 if exist(htmlname,'file') == 2 471 s = [s '<a href="../' htmlname '">' tok '</a>, ']; 514 % htmlname = fullfile(subdir,htmlname); 515 htmlfullname1 = fullfile(htmldir,htmlname); 516 htmlfullname2 = fullfile(fullfile(fileparts(htmldir),subdir),htmlname); 517 if exist(htmlfullname1,'file') == 2 % check whether command is in htmldir 518 s = [s '<a href="./' htmlname '">' tok '</a>, ']; 519 elseif exist(htmlfullname2,'file') == 2 % exists elsewhere? 520 s = [s '<a href="../' fullfile(subdir,htmlname) '">' tok '</a>, ']; 472 521 elseif isempty(tok) || ~isempty(regexp(tok,'^ *', 'once' )) 473 522 ; … … 554 603 return 555 604 556 function run_all_files(command )557 558 dirs = {'ldc','dataset','datafile','mapping'};605 function run_all_files(command,dirs,subdir) 606 607 %dirs = {'ldc','dataset','datafile','mapping'}; 559 608 for n=1:length(dirs) 560 609 prtools_dir = fileparts(which(dirs{n})); … … 564 613 [qq,name] = fileparts(ff{j}); 565 614 if n==1 566 feval(command,name ); % prtools main commands615 feval(command,name,[],fullfile(subdir,prtools_dirname)); % prtools main commands 567 616 else 568 feval(command,fullfile(prtools_dirname,name) ); % subdir commands617 feval(command,fullfile(prtools_dirname,name),[],fullfile(subdir,prtools_dirname)); % subdir commands 569 618 end 570 619 end
Note: See TracChangeset
for help on using the changeset viewer.