%WVOTEC Weighted combiner (Adaboost weights) % % W = WVOTEC(A,V) compute weigths and store % W = WVOTEC(V,U) Construct weighted combiner using weights U % % INPUT % A Labeled dataset % V Parallel or stacked set of trained classifiers % U Set of classifier weights % % OUTPUT % W Combined classifier % % DESCRIPTION % The set of trained classifiers V is combined using weighted % majority voting. If given the weights U are used. If not % given, the weights are computed from the classification % results of the labeled dataset A using 0.5*log((1-E)/E) % if E is the classifier error. % % SEE ALSO % MAPPINGS, DATASETS, % Copyright: R.P.W. Duin, r.p.w.duin@prtools.org % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function w = wvotec(a,v) prtrace(mfilename); if nargin < 1 | isempty(a) w = mapping(mfilename,'untrained'); elseif nargin < 2 error('Illegal call') elseif isdataset(a) % train or classify if ~strcmp(v.mapping_file,mfilename) % training if isparallel(v) % parallel combiner n = 0; e = zeros(1,length(v.data)); for j=1:length(v.data) vv = v.data{j}; d = a(:,n+1:n+size(vv,1))*vv*classc; e(j) = testmc(d); n = n+size(vv,1); end elseif isstacked(v) % stacked combiner e = zeros(1,length(v.data)); for j=1:length(v.data) vv = v.data{j}; e(j) = testmc(a,vv); end else error('Classifier combination expected') end % Find weights L = find(e < 1-max(getprior(a))); % take classifier better than prior alf = zeros(1,length(e)); alf(L) = log((1-e(L))./e(L))/2; alf = alf/sum(alf); % construct the classifier [m,k,c] = getsize(a); w = mapping(mfilename,'trained',{v,alf},getlabels(vv),k,c); w = setname(w,'Weighted Voting'); else % testing alf = v.data{2}; % get the weights u = v.data{1}; % get the set of classifiers m = size(a,1); dtot = zeros(m,size(v,2)); if isparallel(u) % parallel combiner n = 0; for j=1:length(u.data) % weight them vv = u.data{j}; aa = a(:,n+1:n+size(vv,1)); d = a(:,n+1:n+size(vv,1))*vv; [dd,jj] = max(+d,[],2); dd = zeros(size(dtot)); dd([1:m]'+(jj-1)*m) = alf(j); dtot = dtot + dd; n = n+size(vv,1); end elseif isstacked(u) % stacked combiner for j=1:length(u.data) % weight them vv = u.data{j}; d = a*vv; [dd,jj] = max(+d,[],2); dd = zeros(size(dtot)); dd([1:m]'+(jj-1)*m) = alf(j); dtot = dtot + dd; end else error('Classifier combination expected') end w = setdat(d,dtot); end else % store classifier from given weights ismapping(a); u = v; % the weights v = a; % the combined classifier n = length(v.data); if length(u) ~= n error('Wrong number of weights given') end [k,c] = getsize(v.data{1}); w = mapping(mfilename,'trained',{v,u},getlabels(v{1}),k,c); w = setname(w,'Weighted Voting'); end