[87] | 1 | %WLOGLC2 Weighted Logistic Linear Classifier |
---|
| 2 | % |
---|
| 3 | % W = WLOGLC2(A, L, V) |
---|
| 4 | % |
---|
| 5 | % INPUT |
---|
| 6 | % A Dataset |
---|
| 7 | % L Regularization parameter (L2) |
---|
| 8 | % V Weights |
---|
| 9 | % |
---|
| 10 | % OUTPUT |
---|
| 11 | % W Weighted Logistic linear classifier |
---|
| 12 | % |
---|
| 13 | % DESCRIPTION |
---|
| 14 | % Computation of the linear classifier for the dataset A by maximizing the |
---|
| 15 | % L2-regularized likelihood criterion using the logistic (sigmoid) function. |
---|
| 16 | % The default value for L is 0. |
---|
| 17 | % |
---|
| 18 | % |
---|
| 19 | % SEE ALSO |
---|
| 20 | % MAPPINGS, DATASETS, LDC, FISHERC |
---|
| 21 | |
---|
| 22 | function [b, ll] = wloglc2(a, lambda, v) |
---|
| 23 | |
---|
| 24 | name = 'Weighted Logistic2'; |
---|
| 25 | if ~exist('minFunc', 'file') |
---|
| 26 | error('LOGLC2 requires the minFunc optimizer. Please download it from www.di.ens.fr/~mschmidt/Software/minFunc.html and add it to the Matlab path.'); |
---|
| 27 | end |
---|
| 28 | |
---|
| 29 | if nargin<3 |
---|
| 30 | v = []; |
---|
| 31 | end |
---|
| 32 | if nargin<2 || isempty(lambda) |
---|
| 33 | lambda = 0; |
---|
| 34 | end |
---|
| 35 | if nargin == 0 || isempty(a) |
---|
| 36 | b = prmapping(mfilename,{lambda,v}); |
---|
| 37 | b = setname(b, name); |
---|
| 38 | return; |
---|
| 39 | end |
---|
| 40 | |
---|
| 41 | if ~ismapping(lambda) |
---|
| 42 | % training |
---|
| 43 | islabtype(a, 'crisp'); |
---|
| 44 | isvaldfile(a, 1, 2); |
---|
| 45 | a = testdatasize(a, 'features'); |
---|
| 46 | a = setprior(a, getprior(a)); |
---|
| 47 | [n, k, c] = getsize(a); |
---|
| 48 | |
---|
| 49 | % fix the weights: |
---|
| 50 | if isempty(n) |
---|
| 51 | v = ones(n,1); |
---|
| 52 | end |
---|
| 53 | % normalize |
---|
| 54 | v = n*v(:)./sum(v); |
---|
| 55 | |
---|
| 56 | % Train the logistic regressor |
---|
| 57 | [data.E, data.E_bias] = train_logreg(+a', getnlab(a)', lambda, v); |
---|
| 58 | b = prmapping(mfilename, 'trained', data, getlablist(a), k, c); |
---|
| 59 | b = setname(b, name); |
---|
| 60 | |
---|
| 61 | else |
---|
| 62 | % Evaluate logistic classifier |
---|
| 63 | W = getdata(lambda); |
---|
| 64 | [~, test_post] = eval_logreg(+a', W.E, W.E_bias); |
---|
| 65 | a = prdataset(a); |
---|
| 66 | b = setdata(a, test_post', getlabels(lambda)); |
---|
| 67 | ll = []; |
---|
| 68 | end |
---|
| 69 | |
---|
| 70 | end |
---|
| 71 | |
---|
| 72 | function [E, E_bias] = train_logreg(train_X, train_labels, lambda, v, E_init, E_bias_init) |
---|
| 73 | |
---|
| 74 | % Initialize solution |
---|
| 75 | D = size(train_X, 1); |
---|
| 76 | [lablist, foo, train_labels] = unique(train_labels); |
---|
| 77 | K = length(lablist); |
---|
| 78 | if ~exist('E_init', 'var') || isempty(E_init) |
---|
| 79 | E = randn(D, K) * .0001; |
---|
| 80 | else |
---|
| 81 | E = E_init; clear E_init |
---|
| 82 | end |
---|
| 83 | if ~exist('E_bias_init', 'var') || isempty(E_bias_init) |
---|
| 84 | E_bias = zeros(1, K); |
---|
| 85 | else |
---|
| 86 | E_bias = E_bias_init; clear E_bias_init; |
---|
| 87 | end |
---|
| 88 | |
---|
| 89 | % Compute positive part of gradient |
---|
| 90 | pos_E = zeros(D, K); |
---|
| 91 | pos_E_bias = zeros(1, K); |
---|
| 92 | VX = repmat(v',D,1).*train_X; |
---|
| 93 | for k=1:K |
---|
| 94 | pos_E(:,k) = sum(VX(:,train_labels == k), 2); |
---|
| 95 | end |
---|
| 96 | for k=1:K |
---|
| 97 | I = find(train_labels==k); |
---|
| 98 | pos_E_bias(k) = sum(v(I)); |
---|
| 99 | end |
---|
| 100 | |
---|
| 101 | % Perform learning using L-BFGS |
---|
| 102 | x = [E(:); E_bias(:)]; |
---|
| 103 | options.Method = 'lbfgs'; |
---|
| 104 | %options.Display = 'on'; %DXD: nooooo! |
---|
| 105 | options.Display = 'off'; |
---|
| 106 | options.TolFun = 1e-4; |
---|
| 107 | options.TolX = 1e-4; |
---|
| 108 | options.MaxIter = 5000; |
---|
| 109 | x = minFunc(@logreg_grad, x, options, train_X, train_labels, lambda, v, pos_E, pos_E_bias); |
---|
| 110 | |
---|
| 111 | % Decode solution |
---|
| 112 | E = reshape(x(1:D * K), [D K]); |
---|
| 113 | E_bias = reshape(x(D * K + 1:end), [1 K]); |
---|
| 114 | end |
---|
| 115 | |
---|
| 116 | |
---|
| 117 | function [est_labels, posterior] = eval_logreg(test_X, E, E_bias) |
---|
| 118 | |
---|
| 119 | % Perform labeling |
---|
| 120 | if ~iscell(test_X) |
---|
| 121 | log_Pyx = bsxfun(@plus, E' * test_X, E_bias'); |
---|
| 122 | else |
---|
| 123 | log_Pyx = zeros(length(E_bias), length(test_X)); |
---|
| 124 | for i=1:length(test_X) |
---|
| 125 | for j=1:length(test_X{i}) |
---|
| 126 | log_Pyx(:,i) = log_Pyx(:,i) + sum(E(test_X{i}{j},:), 1)'; |
---|
| 127 | end |
---|
| 128 | end |
---|
| 129 | log_Pyx = bsxfun(@plus, log_Pyx, E_bias'); |
---|
| 130 | end |
---|
| 131 | [~, est_labels] = max(log_Pyx, [], 1); |
---|
| 132 | |
---|
| 133 | % Compute posterior |
---|
| 134 | if nargout > 1 |
---|
| 135 | posterior = exp(bsxfun(@minus, log_Pyx, max(log_Pyx, [], 1))); |
---|
| 136 | posterior = bsxfun(@rdivide, posterior, sum(posterior, 1)); |
---|
| 137 | end |
---|
| 138 | end |
---|
| 139 | |
---|
| 140 | |
---|
| 141 | function [C, dC] = logreg_grad(x, train_X, train_labels, lambda, v, pos_E, pos_E_bias) |
---|
| 142 | %LOGREG_GRAD Gradient of L2-regularized logistic regressor |
---|
| 143 | % |
---|
| 144 | % [C, dC] = logreg_grad(x, train_X, train_labels, lambda, pos_E, pos_E_bias) |
---|
| 145 | % |
---|
| 146 | % Gradient of L2-regularized logistic regressor. |
---|
| 147 | |
---|
| 148 | |
---|
| 149 | % Decode solution |
---|
| 150 | [D, N] = size(train_X); |
---|
| 151 | K = numel(x) / (D + 1); |
---|
| 152 | E = reshape(x(1:D * K), [D K]); |
---|
| 153 | E_bias = reshape(x(D * K + 1:end), [1 K]); |
---|
| 154 | |
---|
| 155 | % Compute p(y|x) |
---|
| 156 | gamma = bsxfun(@plus, E' * train_X, E_bias'); |
---|
| 157 | gamma = exp(bsxfun(@minus, gamma, max(gamma, [], 1))); |
---|
| 158 | gamma = bsxfun(@rdivide, gamma, max(sum(gamma, 1), realmin)); |
---|
| 159 | |
---|
| 160 | % Compute conditional log-likelihood |
---|
| 161 | C = 0; |
---|
| 162 | for n=1:N |
---|
| 163 | C = C - log(max(v(n)*gamma(train_labels(n), n), realmin)); |
---|
| 164 | end |
---|
| 165 | C = C + lambda .* sum(x .^ 2); |
---|
| 166 | |
---|
| 167 | % Only compute gradient when required |
---|
| 168 | if nargout > 1 |
---|
| 169 | |
---|
| 170 | % Compute positive part of gradient |
---|
| 171 | if ~exist('pos_E', 'var') || isempty(pos_E) |
---|
| 172 | pos_E = zeros(D, K); |
---|
| 173 | VX = repmat(v',D,1).*train_X; |
---|
| 174 | for k=1:K |
---|
| 175 | pos_E(:,k) = sum(VX(:,train_labels == k), 2); |
---|
| 176 | end |
---|
| 177 | end |
---|
| 178 | if ~exist('pos_E_bias', 'var') || isempty(pos_E_bias) |
---|
| 179 | pos_E_bias = zeros(1, K); |
---|
| 180 | for k=1:K |
---|
| 181 | I = find(train_labels==k); |
---|
| 182 | pos_E_bias(k) = sum(v(I)); |
---|
| 183 | end |
---|
| 184 | end |
---|
| 185 | |
---|
| 186 | % Compute negative part of gradient |
---|
| 187 | neg_E = (repmat(v',D,1).*train_X) * gamma'; |
---|
| 188 | neg_E_bias = gamma*v; |
---|
| 189 | |
---|
| 190 | % Compute gradient |
---|
| 191 | dC = -[pos_E(:) - neg_E(:); pos_E_bias(:) - neg_E_bias(:)] + 2 .* lambda .* x; |
---|
| 192 | end |
---|
| 193 | end |
---|