source: prextra/modeclust.m @ 23

Last change on this file since 23 was 9, checked in by bduin, 14 years ago
File size: 2.0 KB
RevLine 
[9]1%MODECLUST Clustering by mode-seeking in feature space
2%
3%       [LAB,J] = MODECLUST(A,K)
4%
5% INPUT
6%   A       Dataset
7%   K       Number of neighbours to search for local mode (default: 10)
8%
9% OUTPUT
10%   LAB     Cluster assignments, 1..K
11%   J       Indices of modal samples
12%
13% DESCRIPTION
14% A K-NN modeseeking method is used to assign objects to their nearest mode.
15% The nearest neighbor implementation uses the ANN Matlab Wrapper package.
16% It should be in the path. If needed download it from
17% http://webscripts.softpedia.com/scriptDownload/ANN-MATLAB-Wrapper-Download-33976.html
18%
19% LITERATURE
20% Cheng, Y. "Mean shift, mode Seeking, and clustering", IEEE Transactions
21% on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790-799,
22% 1995.
23%
24% SEE ALSO
25% MAPPINGS, DATASETS, KMEANS, HCLUST, KCENTRES, PROXM
26
27% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org
28% Faculty EWI, Delft University of Technology
29% P.O. Box 5031, 2600 GA Delft, The Netherlands
30
31
32function [assign,J] = modeclust(a,k)
33
34        prtrace(mfilename);
35       
36        % ANNQUERY needs to be in the path
37        annquerycheck;
38
39        % prepare data
40        if (nargin < 2), k = 10; end
41        m = size(a,1);
42        b = (+a)';
43       
44        % Run the k-NN search, indices in J, distances in d
45        [J,d]= annquery(b,b,k);
46
47        % density estimate from distance to most remote neighbor
48        f = 1./(max(d,[],1)+realmin)';
49       
50        % Find local indices of local density maxima in neighbourhood.
51        [dummy,I] = max(reshape(f(J),size(J)));
52
53        % Translate back to indices in all the data. N will contain the
54        % dataset index of their initial mode estimate in the K-neighbourhood.
55        N = J(I+[0:k:k*(m-1)]);
56
57        % Climb the mode
58        % Re-assign samples to the sample temporily mode is assigned to.
59        % Iterate until assignments don't change anymore. Samples that then point
60        % to themselves are modes; all other samples point to the closest mode.
61
62        M = N(N);
63        while (any(M~=N))
64                N = M; M = N(N);
65        end
66
67        % Use renumlab to obtain assignments 1, 2, ... and the list of unique
68        % assignments (the modes).
69        [assign,J] = renumlab(M');
70
71return
Note: See TracBrowser for help on using the repository browser.