function [B, ll] = loglc2(A, W) %LOGLC2 Logistic Linear Classifier % % W = LOGLC2(A, L) % % INPUT % A Dataset % L Regularization parameter (L2) % % OUTPUT % W Logistic linear classifier % % DESCRIPTION % Computation of the linear classifier for the dataset A by maximizing the % L2-regularized likelihood criterion using the logistic (sigmoid) function. % The default value for L is 0. % % % SEE ALSO % MAPPINGS, DATASETS, LDC, FISHERC name = 'Logistic2'; if ~exist('minFunc', 'file') error('LOGLC2 requires the minFunc optimizer. Please download it from www.di.ens.fr/~mschmidt/Software/minFunc.html and add it to the Matlab path.'); end % Handle untrained calls like W = loglc2([]); if nargin == 0 || isempty(A) B = mapping(mfilename); B = setname(B, name); return; % Handle training on dataset A (use A * loglc2, A * loglc2([]), and loglc2(A)) elseif (nargin == 1 && isa(A, 'dataset')) || (isa(A, 'dataset') && isa(W, 'double')) if nargin < 2 W = 0; end islabtype(A, 'crisp'); isvaldfile(A, 1, 2); A = testdatasize(A, 'features'); A = setprior(A, getprior(A)); [~, k, c] = getsize(A); % Train the logistic regressor [data.E, data.E_bias] = train_logreg(+A', getnlab(A)', W); B = mapping(mfilename, 'trained', data, getlablist(A), k, c); B = setname(B, name); % Handle evaluation of a trained LOGLC2 W for a dataset A elseif (isa(A, 'dataset') && isa(W, 'mapping')) || (isa(A, 'double') && isa(W, 'mapping')) % Evaluate logistic classifier [~, test_post] = eval_logreg(+A', W.data.E, W.data.E_bias); A = dataset(A); B = setdata(A, test_post', getlabels(W)); ll = []; % This should not happen else error('Illegal call'); end end function [E, E_bias] = train_logreg(train_X, train_labels, lambda, E_init, E_bias_init) % Initialize solution if ~iscell(train_X) D = size(train_X, 1); else D = 0; for i=1:length(train_X) D = max(D, max(train_X{i})); end end [lablist, foo, train_labels] = unique(train_labels); K = length(lablist); if ~exist('E_init', 'var') || isempty(E_init) E = randn(D, K) * .0001; else E = E_init; clear E_init end if ~exist('E_bias_init', 'var') || isempty(E_bias_init) E_bias = zeros(1, K); else E_bias = E_bias_init; clear E_bias_init; end % Compute positive part of gradient pos_E = zeros(D, K); pos_E_bias = zeros(1, K); if ~iscell(train_X) for k=1:K pos_E(:,k) = sum(train_X(:,train_labels == k), 2); end else for i=1:length(train_X) pos_E(train_X{i}, train_labels(i)) = pos_E(train_X{i}, train_labels(i)) + 1; end end for k=1:K pos_E_bias(k) = sum(train_labels == k); end % Perform learning using L-BFGS x = [E(:); E_bias(:)]; options.Method = 'lbfgs'; options.Display = 'on'; options.TolFun = 1e-4; options.TolX = 1e-4; options.MaxIter = 5000; if ~iscell(train_X) x = minFunc(@logreg_grad, x, options, train_X, train_labels, lambda, pos_E, pos_E_bias); else x = minFunc(@logreg_discrete_grad, x, options, train_X, train_labels, lambda, pos_E, pos_E_bias); end % Decode solution E = reshape(x(1:D * K), [D K]); E_bias = reshape(x(D * K + 1:end), [1 K]); end function [est_labels, posterior] = eval_logreg(test_X, E, E_bias) % Perform labeling if ~iscell(test_X) log_Pyx = bsxfun(@plus, E' * test_X, E_bias'); else log_Pyx = zeros(length(E_bias), length(test_X)); for i=1:length(test_X) for j=1:length(test_X{i}) log_Pyx(:,i) = log_Pyx(:,i) + sum(E(test_X{i}{j},:), 1)'; end end log_Pyx = bsxfun(@plus, log_Pyx, E_bias'); end [~, est_labels] = max(log_Pyx, [], 1); % Compute posterior if nargout > 1 posterior = exp(bsxfun(@minus, log_Pyx, max(log_Pyx, [], 1))); posterior = bsxfun(@rdivide, posterior, sum(posterior, 1)); end end function [C, dC] = logreg_grad(x, train_X, train_labels, lambda, pos_E, pos_E_bias) %LOGREG_GRAD Gradient of L2-regularized logistic regressor % % [C, dC] = logreg_grad(x, train_X, train_labels, lambda, pos_E, pos_E_bias) % % Gradient of L2-regularized logistic regressor. % Decode solution [D, N] = size(train_X); K = numel(x) / (D + 1); E = reshape(x(1:D * K), [D K]); E_bias = reshape(x(D * K + 1:end), [1 K]); % Compute p(y|x) gamma = bsxfun(@plus, E' * train_X, E_bias'); gamma = exp(bsxfun(@minus, gamma, max(gamma, [], 1))); gamma = bsxfun(@rdivide, gamma, max(sum(gamma, 1), realmin)); % Compute conditional log-likelihood C = 0; for n=1:N C = C - log(max(gamma(train_labels(n), n), realmin)); end C = C + lambda .* sum(x .^ 2); % Only compute gradient when required if nargout > 1 % Compute positive part of gradient if ~exist('pos_E', 'var') || isempty(pos_E) pos_E = zeros(D, K); for k=1:K pos_E(:,k) = sum(train_X(:,train_labels == k), 2); end end if ~exist('pos_E_bias', 'var') || isempty(pos_E_bias) pos_E_bias = zeros(1, K); for k=1:K pos_E_bias(k) = sum(train_labels == k); end end % Compute negative part of gradient neg_E = train_X * gamma'; neg_E_bias = sum(gamma, 2)'; % Compute gradient dC = -[pos_E(:) - neg_E(:); pos_E_bias(:) - neg_E_bias(:)] + 2 .* lambda .* x; end end