[32] | 1 | function [B, ll] = loglc2(A, W) |
---|
| 2 | %LOGLC2 Logistic Linear Classifier |
---|
| 3 | % |
---|
| 4 | % W = LOGLC2(A, L) |
---|
| 5 | % |
---|
| 6 | % INPUT |
---|
| 7 | % A Dataset |
---|
| 8 | % L Regularization parameter (L2) |
---|
| 9 | % |
---|
| 10 | % OUTPUT |
---|
| 11 | % W Logistic linear classifier |
---|
| 12 | % |
---|
| 13 | % DESCRIPTION |
---|
| 14 | % Computation of the linear classifier for the dataset A by maximizing the |
---|
| 15 | % L2-regularized likelihood criterion using the logistic (sigmoid) function. |
---|
| 16 | % The default value for L is 0. |
---|
| 17 | % |
---|
| 18 | % |
---|
| 19 | % SEE ALSO |
---|
| 20 | % MAPPINGS, DATASETS, LDC, FISHERC |
---|
| 21 | |
---|
| 22 | |
---|
[34] | 23 | name = 'Logistic2'; |
---|
| 24 | if ~exist('minFunc', 'file') |
---|
[32] | 25 | prwarning(1, 'LOGLC2 requires the minFunc optimizer. Please download it from www.di.ens.fr/~mschmidt/Software/minFunc.html and add it to the Matlab path.'); |
---|
| 26 | end |
---|
| 27 | |
---|
| 28 | % Handle untrained calls like W = loglc2([]); |
---|
| 29 | if nargin == 0 || isempty(A) |
---|
| 30 | B = mapping(mfilename); |
---|
| 31 | B = setname(B, name); |
---|
| 32 | return; |
---|
| 33 | |
---|
| 34 | % Handle training on dataset A (use A * loglc2, A * loglc2([]), and loglc2(A)) |
---|
| 35 | elseif (nargin == 1 && isa(A, 'dataset')) || (isa(A, 'dataset') && isa(W, 'double')) |
---|
| 36 | if nargin < 2 |
---|
| 37 | W = 0; |
---|
| 38 | end |
---|
| 39 | islabtype(A, 'crisp'); |
---|
| 40 | isvaldfile(A, 1, 2); |
---|
| 41 | A = testdatasize(A, 'features'); |
---|
| 42 | A = setprior(A, getprior(A)); |
---|
| 43 | [~, k, c] = getsize(A); |
---|
| 44 | |
---|
| 45 | % Train the logistic regressor |
---|
| 46 | [data.E, data.E_bias] = train_logreg(+A', getnlab(A)', W); |
---|
| 47 | B = mapping(mfilename, 'trained', data, getlablist(A), k, c); |
---|
| 48 | B = setname(B, name); |
---|
| 49 | |
---|
| 50 | % Handle evaluation of a trained LOGLC2 W for a dataset A |
---|
| 51 | elseif isa(A, 'dataset') && isa(W, 'mapping') |
---|
| 52 | |
---|
| 53 | % Evaluate logistic classifier |
---|
| 54 | [~, test_post] = eval_logreg(+A', W.data.E, W.data.E_bias); |
---|
| 55 | A = dataset(A); |
---|
| 56 | B = setdata(A, test_post', getlabels(W)); |
---|
| 57 | ll = []; |
---|
| 58 | |
---|
| 59 | % This should not happen |
---|
| 60 | else |
---|
| 61 | error('Illegal call'); |
---|
| 62 | end |
---|
| 63 | end |
---|
| 64 | |
---|
| 65 | function [E, E_bias] = train_logreg(train_X, train_labels, lambda, E_init, E_bias_init) |
---|
| 66 | |
---|
| 67 | % Initialize solution |
---|
| 68 | if ~iscell(train_X) |
---|
| 69 | D = size(train_X, 1); |
---|
| 70 | else |
---|
| 71 | D = 0; |
---|
| 72 | for i=1:length(train_X) |
---|
| 73 | D = max(D, max(train_X{i})); |
---|
| 74 | end |
---|
| 75 | end |
---|
| 76 | [lablist, foo, train_labels] = unique(train_labels); |
---|
| 77 | K = length(lablist); |
---|
| 78 | if ~exist('E_init', 'var') || isempty(E_init) |
---|
| 79 | E = randn(D, K) * .0001; |
---|
| 80 | else |
---|
| 81 | E = E_init; clear E_init |
---|
| 82 | end |
---|
| 83 | if ~exist('E_bias_init', 'var') || isempty(E_bias_init) |
---|
| 84 | E_bias = zeros(1, K); |
---|
| 85 | else |
---|
| 86 | E_bias = E_bias_init; clear E_bias_init; |
---|
| 87 | end |
---|
| 88 | |
---|
| 89 | % Compute positive part of gradient |
---|
| 90 | pos_E = zeros(D, K); |
---|
| 91 | pos_E_bias = zeros(1, K); |
---|
| 92 | if ~iscell(train_X) |
---|
| 93 | for k=1:K |
---|
| 94 | pos_E(:,k) = sum(train_X(:,train_labels == k), 2); |
---|
| 95 | end |
---|
| 96 | else |
---|
| 97 | for i=1:length(train_X) |
---|
| 98 | pos_E(train_X{i}, train_labels(i)) = pos_E(train_X{i}, train_labels(i)) + 1; |
---|
| 99 | end |
---|
| 100 | end |
---|
| 101 | for k=1:K |
---|
| 102 | pos_E_bias(k) = sum(train_labels == k); |
---|
| 103 | end |
---|
| 104 | |
---|
| 105 | % Perform learning using L-BFGS |
---|
| 106 | x = [E(:); E_bias(:)]; |
---|
| 107 | options.Method = 'lbfgs'; |
---|
| 108 | options.Display = 'on'; |
---|
| 109 | options.TolFun = 1e-4; |
---|
| 110 | options.TolX = 1e-4; |
---|
| 111 | options.MaxIter = 5000; |
---|
| 112 | if ~iscell(train_X) |
---|
| 113 | x = minFunc(@logreg_grad, x, options, train_X, train_labels, lambda, pos_E, pos_E_bias); |
---|
| 114 | else |
---|
| 115 | x = minFunc(@logreg_discrete_grad, x, options, train_X, train_labels, lambda, pos_E, pos_E_bias); |
---|
| 116 | end |
---|
| 117 | |
---|
| 118 | % Decode solution |
---|
| 119 | E = reshape(x(1:D * K), [D K]); |
---|
| 120 | E_bias = reshape(x(D * K + 1:end), [1 K]); |
---|
| 121 | end |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | function [est_labels, posterior] = eval_logreg(test_X, E, E_bias) |
---|
| 125 | |
---|
| 126 | % Perform labeling |
---|
| 127 | if ~iscell(test_X) |
---|
| 128 | log_Pyx = bsxfun(@plus, E' * test_X, E_bias'); |
---|
| 129 | else |
---|
| 130 | log_Pyx = zeros(length(E_bias), length(test_X)); |
---|
| 131 | for i=1:length(test_X) |
---|
| 132 | for j=1:length(test_X{i}) |
---|
| 133 | log_Pyx(:,i) = log_Pyx(:,i) + sum(E(test_X{i}{j},:), 1)'; |
---|
| 134 | end |
---|
| 135 | end |
---|
| 136 | log_Pyx = bsxfun(@plus, log_Pyx, E_bias'); |
---|
| 137 | end |
---|
| 138 | [~, est_labels] = max(log_Pyx, [], 1); |
---|
| 139 | |
---|
| 140 | % Compute posterior |
---|
| 141 | if nargout > 1 |
---|
| 142 | posterior = exp(bsxfun(@minus, log_Pyx, max(log_Pyx, [], 1))); |
---|
| 143 | posterior = bsxfun(@rdivide, posterior, sum(posterior, 1)); |
---|
| 144 | end |
---|
| 145 | end |
---|
| 146 | |
---|
| 147 | |
---|
| 148 | function [C, dC] = logreg_grad(x, train_X, train_labels, lambda, pos_E, pos_E_bias) |
---|
| 149 | %LOGREG_GRAD Gradient of L2-regularized logistic regressor |
---|
| 150 | % |
---|
| 151 | % [C, dC] = logreg_grad(x, train_X, train_labels, lambda, pos_E, pos_E_bias) |
---|
| 152 | % |
---|
| 153 | % Gradient of L2-regularized logistic regressor. |
---|
| 154 | |
---|
| 155 | |
---|
| 156 | % Decode solution |
---|
| 157 | [D, N] = size(train_X); |
---|
| 158 | K = numel(x) / (D + 1); |
---|
| 159 | E = reshape(x(1:D * K), [D K]); |
---|
| 160 | E_bias = reshape(x(D * K + 1:end), [1 K]); |
---|
| 161 | |
---|
| 162 | % Compute p(y|x) |
---|
| 163 | gamma = bsxfun(@plus, E' * train_X, E_bias'); |
---|
| 164 | gamma = exp(bsxfun(@minus, gamma, max(gamma, [], 1))); |
---|
| 165 | gamma = bsxfun(@rdivide, gamma, max(sum(gamma, 1), realmin)); |
---|
| 166 | |
---|
| 167 | % Compute conditional log-likelihood |
---|
| 168 | C = 0; |
---|
| 169 | for n=1:N |
---|
| 170 | C = C - log(max(gamma(train_labels(n), n), realmin)); |
---|
| 171 | end |
---|
| 172 | C = C + lambda .* sum(x .^ 2); |
---|
| 173 | |
---|
| 174 | % Only compute gradient when required |
---|
| 175 | if nargout > 1 |
---|
| 176 | |
---|
| 177 | % Compute positive part of gradient |
---|
| 178 | if ~exist('pos_E', 'var') || isempty(pos_E) |
---|
| 179 | pos_E = zeros(D, K); |
---|
| 180 | for k=1:K |
---|
| 181 | pos_E(:,k) = sum(train_X(:,train_labels == k), 2); |
---|
| 182 | end |
---|
| 183 | end |
---|
| 184 | if ~exist('pos_E_bias', 'var') || isempty(pos_E_bias) |
---|
| 185 | pos_E_bias = zeros(1, K); |
---|
| 186 | for k=1:K |
---|
| 187 | pos_E_bias(k) = sum(train_labels == k); |
---|
| 188 | end |
---|
| 189 | end |
---|
| 190 | |
---|
| 191 | % Compute negative part of gradient |
---|
| 192 | neg_E = train_X * gamma'; |
---|
| 193 | neg_E_bias = sum(gamma, 2)'; |
---|
| 194 | |
---|
| 195 | % Compute gradient |
---|
| 196 | dC = -[pos_E(:) - neg_E(:); pos_E_bias(:) - neg_E_bias(:)] + 2 .* lambda .* x; |
---|
| 197 | end |
---|
| 198 | end |
---|