[5] | 1 | function out = lessfx(par,x) |
---|
| 2 | %LESSFX simple dataset mappings |
---|
| 3 | % |
---|
| 4 | % PAR = LESSFX(TYPE,X) |
---|
| 5 | % |
---|
| 6 | % 'Train' or define a mapping of different types. |
---|
| 7 | % TYPE can be: |
---|
| 8 | % 1: (x - m_2).^2 - (x - m_1).^2 normal nearest means |
---|
| 9 | % 2: ((x-m_2).^2)/s1 - ((x-m_1).^2)/s2 weighted nearest means |
---|
| 10 | % 3: (x-|m|_2).^2 - (x-|m|_1).^2 nearest medians |
---|
| 11 | % 4: exp(-((x-M1).^2)./S1) - exp(-((x-M2).^2)./S2); |
---|
| 12 | % 5: " " with medians instead of % avergs |
---|
| 13 | % |
---|
| 14 | % New data is mapped using: |
---|
| 15 | % Y = LESSFX(PAR,X) |
---|
| 16 | % where X in the input dataset, and PAR is obtained as above... |
---|
| 17 | % |
---|
| 18 | % This is used in LESS.M |
---|
| 19 | |
---|
| 20 | |
---|
| 21 | if ~isstruct(par) % we train the parameters of the function |
---|
| 22 | out = []; |
---|
| 23 | out.type = par; |
---|
| 24 | switch out.type |
---|
| 25 | case 0 |
---|
| 26 | out.bla = []; |
---|
| 27 | case 1 % basic version |
---|
| 28 | out.u = +meancov(x); |
---|
| 29 | case 2 % mean-var |
---|
| 30 | [u,g] = meancov(x); |
---|
| 31 | out.u = +u; |
---|
| 32 | out.g(1,:) = diag(g(:,:,1)) + mean(diag(g(:,:,1))); |
---|
| 33 | out.g(2,:) = diag(g(:,:,2)) + mean(diag(g(:,:,2))); |
---|
| 34 | case 3 % median |
---|
| 35 | out.u(1,:) = med(+seldat(x,1)); |
---|
| 36 | out.u(2,:) = med(+seldat(x,2)); |
---|
| 37 | case 4 % mean-var |
---|
| 38 | [u,g] = meancov(x); |
---|
| 39 | out.u = +u; |
---|
| 40 | out.g(1,:) = diag(g(:,:,1)) + mean(diag(g(:,:,1))); |
---|
| 41 | out.g(2,:) = diag(g(:,:,2)) + mean(diag(g(:,:,2))); |
---|
| 42 | case 5 % median-MSD |
---|
| 43 | [u,g] = meancov(x); |
---|
| 44 | X1 = seldat(x,1); |
---|
| 45 | X2 = seldat(x,2); |
---|
| 46 | out.u(1,:) = med(+X1); |
---|
| 47 | out.u(2,:) = med(+X2); |
---|
| 48 | out.g(1,:) = medstd(+X1,out.u(1,:)) + mean(diag(g(:,:,1))); |
---|
| 49 | out.g(2,:) = medstd(+X2,out.u(2,:)) + mean(diag(g(:,:,2))); |
---|
| 50 | case 6 % median-MSD |
---|
| 51 | X1 = seldat(x,1); |
---|
| 52 | X2 = seldat(x,2); |
---|
| 53 | out.u(1,:) = med(+X1); |
---|
| 54 | out.u(2,:) = med(+X2); |
---|
| 55 | out.g(1,:) = medstd(+X1,out.u(1,:)); |
---|
| 56 | out.g(2,:) = medstd(+X2,out.u(2,:)); |
---|
| 57 | otherwise |
---|
| 58 | error('This function is not defined'); |
---|
| 59 | end |
---|
| 60 | else % we evaluate the function on new data: |
---|
| 61 | [m,k] = size(x); |
---|
| 62 | switch par.type |
---|
| 63 | case 0 |
---|
| 64 | out = +x; |
---|
| 65 | case 1 |
---|
| 66 | M1 = repmat(par.u(1,:),m,1); |
---|
| 67 | M2 = repmat(par.u(2,:),m,1); |
---|
| 68 | out = -(2*(+x).*(M2-M1) + M1.*M1 - M2.*M2); |
---|
| 69 | case 2 |
---|
| 70 | M1 = repmat(par.u(1,:),m,1); |
---|
| 71 | M2 = repmat(par.u(2,:),m,1); |
---|
| 72 | S1 = repmat(par.g(1,:),m,1); |
---|
| 73 | S2 = repmat(par.g(2,:),m,1); |
---|
| 74 | out = ((x-M2).^2)./S2 - ((x-M1).^2)./S1; |
---|
| 75 | case 3 |
---|
| 76 | M1 = repmat(par.u(1,:),m,1); |
---|
| 77 | M2 = repmat(par.u(2,:),m,1); |
---|
| 78 | out = -(2*(+x).*(M2-M1) + M1.*M1 - M2.*M2); |
---|
| 79 | case 4 |
---|
| 80 | M1 = repmat(par.u(1,:),m,1); |
---|
| 81 | M2 = repmat(par.u(2,:),m,1); |
---|
| 82 | S1 = repmat(par.g(1,:),m,1); |
---|
| 83 | S2 = repmat(par.g(2,:),m,1); |
---|
| 84 | out = exp(-((x-M1).^2)./S1) - exp(-((x-M2).^2)./S2); |
---|
| 85 | case 5 |
---|
| 86 | M1 = repmat(par.u(1,:),m,1); |
---|
| 87 | M2 = repmat(par.u(2,:),m,1); |
---|
| 88 | S1 = repmat(par.g(1,:),m,1); |
---|
| 89 | S2 = repmat(par.g(2,:),m,1); |
---|
| 90 | out = ((x-M2).^2)./S2 - ((x-M1).^2)./S1; |
---|
| 91 | case 6 |
---|
| 92 | M1 = repmat(par.u(1,:),m,1); |
---|
| 93 | M2 = repmat(par.u(2,:),m,1); |
---|
| 94 | S1 = repmat(par.g(1,:),m,1); |
---|
| 95 | S2 = repmat(par.g(2,:),m,1); |
---|
| 96 | %out = ((x-M2).^2)./S2 - ((x-M1).^2)./S1; |
---|
| 97 | out = (sigm(10-((x-M1).^2)./(1*S1)) - sigm(10-((x-M2).^2)./(1*S2))); |
---|
| 98 | otherwise |
---|
| 99 | error('This function is not defined'); |
---|
| 100 | end |
---|
| 101 | |
---|
| 102 | end |
---|
| 103 | |
---|
| 104 | return |
---|