source: prextra/lassoc.m @ 92

Last change on this file since 92 was 90, checked in by dtax, 11 years ago

More help.

File size: 1.4 KB
RevLine 
[90]1%LASSOC
2%
3%      W = LASSOC(X, LAMBDA)
4%
5% Train the LASSO classifier on dataset X. LAMBDA is the regularization
6% parameter.
7
[5]8function w = lassoc(x, lambda)
9
10mustScale=0;
11
12if (nargin < 2)
13        %prwarning(3,'Lambda set to one');
14        lambda = 1;
15end
16if (nargin < 1) | (isempty(x))
[90]17        w = prmapping(mfilename,{lambda});
[5]18        w = setname(w,'LASSO classifier');
19        return
20end
21
22if ~ismapping(lambda)   % train the mapping
23
24    % Unpack the dataset.
25    islabtype(x,'crisp');
26    %isvaldset(x,1,2); % at least 1 object per class, 2 classes
27    [n,k,c] = getsize(x);
28
29    % Is this necessary??
30    if mustScale
31        wsc = scalem(x,'variance');
32        x.data = x.data*wsc;
33    end
34
35    if c ~= 2  % two-class classifier:
36        error('Only a two-class classifier is implemented');
37    end
38
39    beta=-lasso(+x,3-2*getnlab(x),lambda);
40
41    % now find out how sparse the result is:
42    nr = sum(abs(beta)>1.0e-8);
43
44    % and store the results:
45    if mustScale
46        W.wsc = wsc;
47    end
48
49    W.beta = beta; % the ultimate weights
50    W.nr = nr;
[90]51    w = prmapping(mfilename,'trained',W,getlablist(x),size(x,2),c);
[5]52    w = setname(w,'LASSO classifier');
53
54else
55    % Evaluate the classifier on new data:
56    W = getdata(lambda);
57    n = size(x,1);
58
59    % scaling and linear classifier:
60    if mustScale
61        x = x*W.wsc;
62    end
63    out = x*W.beta;
64
65    % and put it nicely in a prtools dataset:
66    w = setdat(x,sigm([-out out]),lambda);
67
68end
69
70return
Note: See TracBrowser for help on using the repository browser.