[5] | 1 | function w = lassoc(x, lambda) |
---|
| 2 | % w = lassoc(x, lambda) |
---|
| 3 | %prtrace(mfilename); |
---|
| 4 | |
---|
| 5 | mustScale=0; |
---|
| 6 | |
---|
| 7 | if (nargin < 2) |
---|
| 8 | %prwarning(3,'Lambda set to one'); |
---|
| 9 | lambda = 1; |
---|
| 10 | end |
---|
| 11 | if (nargin < 1) | (isempty(x)) |
---|
| 12 | w = mapping(mfilename,{lambda}); |
---|
| 13 | w = setname(w,'LASSO classifier'); |
---|
| 14 | return |
---|
| 15 | end |
---|
| 16 | |
---|
| 17 | if ~ismapping(lambda) % train the mapping |
---|
| 18 | |
---|
| 19 | % Unpack the dataset. |
---|
| 20 | islabtype(x,'crisp'); |
---|
| 21 | %isvaldset(x,1,2); % at least 1 object per class, 2 classes |
---|
| 22 | [n,k,c] = getsize(x); |
---|
| 23 | |
---|
| 24 | % Is this necessary?? |
---|
| 25 | if mustScale |
---|
| 26 | wsc = scalem(x,'variance'); |
---|
| 27 | x.data = x.data*wsc; |
---|
| 28 | end |
---|
| 29 | |
---|
| 30 | if c ~= 2 % two-class classifier: |
---|
| 31 | error('Only a two-class classifier is implemented'); |
---|
| 32 | end |
---|
| 33 | |
---|
| 34 | beta=-lasso(+x,3-2*getnlab(x),lambda); |
---|
| 35 | |
---|
| 36 | % now find out how sparse the result is: |
---|
| 37 | nr = sum(abs(beta)>1.0e-8); |
---|
| 38 | |
---|
| 39 | % and store the results: |
---|
| 40 | if mustScale |
---|
| 41 | W.wsc = wsc; |
---|
| 42 | end |
---|
| 43 | |
---|
| 44 | W.beta = beta; % the ultimate weights |
---|
| 45 | W.nr = nr; |
---|
| 46 | w = mapping(mfilename,'trained',W,getlablist(x),size(x,2),c); |
---|
| 47 | w = setname(w,'LASSO classifier'); |
---|
| 48 | |
---|
| 49 | else |
---|
| 50 | % Evaluate the classifier on new data: |
---|
| 51 | W = getdata(lambda); |
---|
| 52 | n = size(x,1); |
---|
| 53 | |
---|
| 54 | % scaling and linear classifier: |
---|
| 55 | if mustScale |
---|
| 56 | x = x*W.wsc; |
---|
| 57 | end |
---|
| 58 | out = x*W.beta; |
---|
| 59 | |
---|
| 60 | % and put it nicely in a prtools dataset: |
---|
| 61 | w = setdat(x,sigm([-out out]),lambda); |
---|
| 62 | |
---|
| 63 | end |
---|
| 64 | |
---|
| 65 | return |
---|