source: prextra/hclustc.m @ 105

Last change on this file since 105 was 35, checked in by dtax, 13 years ago

Make the hierarchical clustering a classifier...

File size: 1.6 KB
RevLine 
[35]1%HCLUSTC Hierarchical clustering classifier
2%
3%    W = HCLUSTC(A,CTYPE,K)
4%    W = HCLUSTC(A,CTYPE,K,U_D)
5%
6% It returns a hierarchical clustering classifier W, trained on dataset A.
7% It is using CTYPE as the between-cluster distance or clustering
8% criterion (see hclust.m for more details), and uses K clusters.
9% This mapping generalizes to new, unseen data. This is done
10% by computing the cluster distance between the new point and all the
11% clusters obtained during training. The object is then assigned to the
12% closest cluster.
13% Per default the (squared) euclidean distance is used, but
14% alternatively other proximity measures can be supplied in U_D.
15%
16% SEE ALSO
17% HCLUST, PROXM
18
19function w = hclustc(a,ctype,k,u_d)
20
21if nargin<4
22        u_d = proxm([],'d',2);
23end
24if nargin<3 || isempty(k)
25        k = 10;
26end
27if nargin<2 || isempty(ctype)
28        ctype = 's';
29end
30if nargin<1 || isempty(a)
31        w = mapping(mfilename,{ctype,k,u_d});
32        w = setname(w,'Hierarchical clustering (k=%d)',k);
33        return
34end
35
36if ~ismapping(ctype)
37        w = a*u_d;
38        D = a*w;
39        [lab, dendr] = hclust(D,ctype,k);
40        x = dataset(+a,lab);
41
42        W.u = u_d;
43        W.x = x;
44        W.k = k;
45        W.ctype = ctype;
46        w = mapping(mfilename,'trained',W,[],size(a,2),k);
47        w = setname(w,'Hierarchical clustering (k=%d)',k);
48
49else
50        % evaluate the clustering on new data:
51        W = getdata(ctype);
52        n = size(a,1);
53        out = zeros(n,W.k);
54        % compute the distance to each cluster:
55        for i=1:k
56                w = seldat(W.x,i)*W.u;
57                d = a*w;
58                switch W.ctype
59                case {'s','single'}
60                        out(:,i) = min(d,[],2);
61                case {'c','complete'}
62                        out(:,i) = max(d,[],2);
63                case {'a','average'}
64                        out(:,i) = mean(d,2);
65                end
66        end
67
68        w = setdat(a,-out,ctype);
69
70end
Note: See TracBrowser for help on using the repository browser.