source: prextra/hausdm.m @ 32

Last change on this file since 32 was 5, checked in by bduin, 14 years ago
File size: 2.7 KB
Line 
1%HAUSDM Hausdorff distance between datasets of image blobs
2%
3%       [DH,DM] = hausdm(A,B,fid)
4%
5% Computes a Hausdorff distance matrix between the sets of binary images
6% A and B, or datasets containing them as features.
7% Progress is reported in fid (fid = 1: on the sreeen).
8% If A and B are image sets and
9% size(A) is [may,max,na]
10% size(B) is [mby,mbx,nb]
11% then DH is the Hausdorff distance matrix, size(DH) = [na,nb], between
12% these sets. DM is the Modified Hausdorff distance matrix.
13% Preferably na <= nb (faster).
14%
15% See M.-P. Dubuisson and A.K. Jain, Modified Hausdorff distance for object
16%     matching, Proceedings 12th IAPR International Conference on Pattern
17%     Recognition (Jerusalem, October 9-13, 1994), vol. 1, IEEE, Piscataway,
18%     NJ, USA,94CH3440-5, 1994, 566-568.
19%
20% $Id: hausdm.m,v 1.1 2005/04/25 05:54:36 duin Exp $
21
22% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl
23% Faculty of Applied Physics, Delft University of Technology
24% P.O. Box 5046, 2600 GA Delft, The Netherlands
25
26function [dh,dm] = hausdm(A,B,fid)
27if nargin < 3, fid = 0; end
28
29if isdataset(A) & isdataset(B)
30        [dh,dm] = hausdm(data2im(A),data2im(B),fid);
31        dh = setdata(A,dh);
32        dm = setdata(A,dm);
33        return
34end
35
36[ma1,ma2,na] = size(A);
37[mb1,mb2,nb] = size(B);
38dh = zeros(na,nb);
39dm = zeros(na,nb);
40for i=1:na
41        a = A(:,:,i);
42        J = find(any(a));
43        J = [min(J):max(J)];
44        K = find(any(a'));
45        K = [min(K):max(K)];
46        a = double(a(K,J));
47        if length(a(:)) > 0
48                a = bord(a,0);
49        end
50        ca = contourc(a,[0.5,0.5]);
51        J = find(ca(1,:) == 0.5);
52        ca(:,[J J+1]) =[];
53        ca = ca - repmat([1.5;1.5],1,size(ca,2));
54        ca = ca/max(ca(:));
55        ca = ca - repmat(max(ca,[],2)/2,1,size(ca,2));
56        for j = 1:nb
57                b = B(:,:,j);
58                J = find(any(b));
59                J = [min(J):max(J)];
60                K = find(any(b'));
61                K = [min(K):max(K)];
62                b = double(b(K,J));
63                if length(b(:)) > 0
64                        b = bord(b,0);
65                end
66                cb = contourc(b,[0.5,0.5]);
67                J = find(cb(1,:) == 0.5);
68                cb(:,[J J+1]) =[];
69                cb = cb - repmat([1.5;1.5],1,size(cb,2));
70                cb = cb/max(cb(:));
71                cb = cb - repmat(max(cb,[],2)/2,1,size(cb,2));
72                dab = sqrt(distm(ca',cb'));
73                dh(i,j) = max(max(min(dab)),max(min(dab')));
74                dm(i,j) = max(mean(min(dab)),mean(min(dab')));
75%               if fid, disp([i,j,dh(i,j),dm(i,j)]); end
76                fprintf(fid,'%5d %5d %10.3f %8.3f \n',i,j,dh(i,j),dm(i,j));
77        end
78end
79       
80% C = bord(A,n,m)
81% Puts a border of width m (default m=1) around image A
82% and gives it value n. If n = NaN: mirror image values.
83function C = bord(A,n,m);
84%ipcontr(0);
85if nargin == 2; m=1; end
86[x,y] = size(A);
87if m > min(x,y)
88        mm = min(x,y);
89        C = bord(A,n,mm);
90        C = bord(C,n,m-mm);
91        return
92end
93if isnan(n)
94   C = [A(:,m:-1:1),A,A(:,y:-1:y-m+1)];
95   C = [C(m:-1:1,:);C;C(x:-1:x-m+1,:)];
96else
97   bx = ones(x,m)*n;
98   by = ones(m,y+2*m)*n;
99   C = [by;[bx,A,bx];by];
100end
101return
Note: See TracBrowser for help on using the repository browser.