Rev | Line | |
---|
[5] | 1 | %GENDATW Sample dataset by given weigths
|
---|
| 2 | %
|
---|
| 3 | % B = GENDATW(A,V,N)
|
---|
| 4 | %
|
---|
| 5 | % INPUT
|
---|
| 6 | % A Dataset
|
---|
| 7 | % V Vector with weigths for each object in A
|
---|
| 8 | % N Number of objects to be generated (default size A);
|
---|
| 9 | %
|
---|
| 10 | % OUTPUT
|
---|
| 11 | % B Dataset
|
---|
| 12 | %
|
---|
| 13 | % DESCRIPTION
|
---|
| 14 | % The dataset A is sampled using the weigths in V as a prior distribution.
|
---|
| 15 |
|
---|
| 16 | function b = gendatw(a,v,n)
|
---|
| 17 |
|
---|
| 18 | isdataset(a);
|
---|
| 19 | if nargin < 3, n = size(a,1); end
|
---|
| 20 |
|
---|
| 21 | v = v./sum(v);
|
---|
| 22 | if any(v<0)
|
---|
| 23 | error('Weights should be positive');
|
---|
| 24 | end
|
---|
| 25 |
|
---|
| 26 | mins = 0;
|
---|
| 27 | nn = 0;
|
---|
| 28 | while(mins < 2)
|
---|
| 29 | N = genclass(n,v);
|
---|
| 30 | L = [];
|
---|
| 31 | while any(N > 0)
|
---|
| 32 | L = [L find(N > 0)];
|
---|
| 33 | N = N-1;
|
---|
| 34 | end
|
---|
| 35 | b = a(L,:);
|
---|
| 36 | mins = min(classsizes(b));
|
---|
| 37 | nn = nn + 1;
|
---|
| 38 | if nn > 100
|
---|
| 39 | error('Problems with weighted subsampling. Please enlarge training set.')
|
---|
| 40 | end
|
---|
| 41 | end
|
---|
| 42 |
|
---|
| 43 | return
|
---|
| 44 |
|
---|
Note: See
TracBrowser
for help on using the repository browser.