[5] | 1 | %FEATSEL2 Pairwise feature selection for classification |
---|
| 2 | % |
---|
| 3 | % [W,R] = FEATSEL2(A,CRIT,K,T,FID) |
---|
| 4 | % |
---|
| 5 | % INPUT |
---|
| 6 | % A Training dataset |
---|
| 7 | % CRIT Name of the criterion or untrained mapping |
---|
| 8 | % (default: 'NN', i.e. the 1-Nearest Neighbor error) |
---|
| 9 | % K Number of features to select (default: K = 0, return optimal set) |
---|
| 10 | % T Tuning dataset (optional) |
---|
| 11 | % FID File ID to write progress to (default [], see PRPROGRESS) |
---|
| 12 | % |
---|
| 13 | % OUTPUT |
---|
| 14 | % W Output feature selection mapping |
---|
| 15 | % R Matrix with step-by-step results |
---|
| 16 | % |
---|
| 17 | % DESCRIPTION |
---|
| 18 | % |
---|
| 19 | % Best pairs of features are evaluated inidividually, i.e. independently |
---|
| 20 | % from other pairs. |
---|
| 21 | % |
---|
| 22 | % SEE ALSO |
---|
| 23 | % MAPPINGS, DATASETS, FEATEVAL, FEATSELF, FEATSELLR, FEATSEL, |
---|
| 24 | % FEATSELO, FEATSELB, FEATSELI, FEATSELP, FEATSELM, PRPROGRESS |
---|
| 25 | |
---|
| 26 | % Copyright: A. Harol, R.P.W. Duin, r.p.w.duin@prtools.org |
---|
| 27 | % Faculty EWI, Delft University of Technology |
---|
| 28 | % P.O. Box 5031, 2600 GA Delft, The Netherlands |
---|
| 29 | |
---|
| 30 | function [w,r] = featself(a,crit,ksel,t,fid) |
---|
| 31 | |
---|
| 32 | prtrace(mfilename); |
---|
| 33 | |
---|
| 34 | if (nargin < 2) | isempty(crit) |
---|
| 35 | prwarning(2,'no criterion specified, assuming NN'); |
---|
| 36 | crit = 'NN'; |
---|
| 37 | end |
---|
| 38 | if (nargin < 3) | isempty(ksel) |
---|
| 39 | ksel = 0; |
---|
| 40 | end |
---|
| 41 | if (nargin < 4) |
---|
| 42 | prwarning(3,'no tuning set supplied (risk of overfit)'); |
---|
| 43 | t = []; |
---|
| 44 | end |
---|
| 45 | if (nargin < 5) |
---|
| 46 | fid = []; |
---|
| 47 | end |
---|
| 48 | |
---|
| 49 | if nargin == 0 | isempty(a) |
---|
| 50 | % Create an empty mapping: |
---|
| 51 | w = mapping(mfilename,{crit,ksel,t}); |
---|
| 52 | else |
---|
| 53 | [m,k] = size(a); |
---|
| 54 | for j1=1:k |
---|
| 55 | for j2=j1+1:k |
---|
| 56 | J(j1,j2) = feateval(a(:,[j1,j2]),crit,t); |
---|
| 57 | end |
---|
| 58 | end |
---|
| 59 | w = pairs_sort(J, ksel); |
---|
| 60 | w = featsel(k,w); |
---|
| 61 | prprogress(fid,'featself finished\n') |
---|
| 62 | end |
---|
| 63 | w = setname(w,'Pairwise FeatSel'); |
---|
| 64 | |
---|
| 65 | return |
---|
| 66 | |
---|
| 67 | function mn = pairs_sort(J, MAX_F) |
---|
| 68 | % Artsiom Harol |
---|
| 69 | if MAX_F == 0, MAX_F = size(J,1); end |
---|
| 70 | ind2=find(J(:)); |
---|
| 71 | a=J(ind2); |
---|
| 72 | [b,ind_sort]=sort(-a); |
---|
| 73 | %ind_sort=(flipud(ind_sort'))'; |
---|
| 74 | ind2=ind2(ind_sort); |
---|
| 75 | [m,n]=ind2sub(size(J),ind2); |
---|
| 76 | |
---|
| 77 | mn=[m(:)';n(:)']; |
---|
| 78 | % mn=[m(1:MAX_F)';n(1:MAX_F)']; |
---|
| 79 | [umn] = unique(mn); |
---|
| 80 | for k=1:length(umn) |
---|
| 81 | ind = find(umn(k) == mn); |
---|
| 82 | mn(ind(2:end)) = []; |
---|
| 83 | end |
---|
| 84 | mn = mn(1:MAX_F)'; |
---|
| 85 | return; |
---|