source: prextra/emc.m @ 143

Last change on this file since 143 was 121, checked in by bduin, 8 years ago
File size: 2.5 KB
Line 
1%EMC EM Classifier using semi-supervised data
2%
3%   W = EMC(A,B,CLASSF,LABTYPE,FID)
4%   W = A*EMC([],B,CLASSF,LABTYPE,FID)
5%
6% INPUT
7%   A       Labeled dataset used for training
8%   B       Additional unlabeled dataset
9%   CLASSF  Untrained classifier (default QDC)
10%   LABTYPE Label type to be used (crisp (default) or soft)
11%   FID     File ID to write progress to (default [], see PRPROGRESS)
12%
13% OUTPUT
14%   W      Trained classifier
15%
16% DESCRIPTION
17% Using the EM algorithm the classifier CLASSF is used iteratively
18% on the joint dataset [A;B]. In each step the labels of A are reset
19% to their initial values. Initial labels in B are neglected.
20% Labels of LABTYPE 'soft' are not supported by all classifiers.
21%
22% SEE ALSO
23% DATASETS, MAPPINGS, EMCLUST, PRPROGRESS
24
25% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org
26% Faculty EWI, Delft University of Technology
27% P.O. Box 5031, 2600 GA Delft, The Netherlands
28
29function w = emc(a,b,classf,labtype)
30        if nargin < 4 | isempty(labtype), labtype = 'crisp'; end
31        if nargin < 3 | isempty(classf), classf = qdc; end     
32        if nargin < 2, b = []; end
33        if nargin < 1 | isempty(a)
34                w = mapping(mfilename,'untrained',{b,classf,labtype,fid});
35                w = setname(w,'EM CLassifier');
36                return
37        end
38
39        islabtype(a,'crisp','soft');
40        isvaldset(a,1,2); % at least 2 object per class, 2 classes
41        if isempty(b)
42                w = a*classf;
43                return
44        end
45        if size(a,2) ~= size(b,2)
46                error('Datasets should have same number of features')
47  end
48       
49  %borg = setlabels(b,getnlab(b));
50        c = getsize(a,3);
51        epsilon = 1e-6;
52        change = 1;
53        nlab = getnlab(a);
54        lablist = getlablist(a);
55  p = getprior(a);
56        a = setlabels(a,nlab);
57  a = setprior(a,p);
58        a = setlabtype(a,labtype);
59        switch labtype
60                case 'crisp'
61                        lab = zeros(size(b,1),1);
62                case 'soft'
63                        lab = zeros(size(b,1),c);
64        end
65        b = prdataset(+b);
66        w = a*classf;
67       
68  starttime = clock;
69  runtime = 0;
70  iter = 0;
71        while change > epsilon
72    %disp(borg*w*testd)
73    if runtime > prtime
74      prwarning(2,['EM algorithme stopped by PRTIME after ' num2str(iter) ' iterations']);
75      break
76    end
77                d = b*w;
78                switch labtype
79                        case 'crisp'
80                                labb = d*labeld;
81                                change = mean(lab ~= labb);
82                        case 'soft'
83                                labb = d*classc;
84                                change = mean(mean((+(labb-lab)).^2));
85                        otherwise
86                                error('Wrong LABTYPE given')
87                end
88                lab = labb;
89                b = setlabtype(b,labtype,lab);
90                c = [setlabtype(a,labtype); b];
91                w = c*classf;
92    runtime = etime(clock,starttime);
93    iter = iter+1;
94        end
95       
96        J = getlabels(w);
97        w = setlabels(w,lablist(J,:));
98       
Note: See TracBrowser for help on using the repository browser.