%IMOX Handwritten character dataset, 192 objects, 8 features, 4 classes % % A = IMOX % % Load the dataset in A. The features are the distances from a bounding box % to the pixels of a set of handwritten characters 'I', 'M', 'O', and 'X', % measured form the corners along the diagnoals and from the edge midpoints % along the horizontal and vertical central axes. % % REFERENCES % 1. R. Dubes and A.K. Jain, Clustering techniques: The user's dilemma, % Pattern Recognition, Volume 8, Issue 4, October 1976, Pages 247-260. % 2. A.K. Jain, R.C. Dubes, C.C. Chen, Bootstrap Techniques for Error Estimation % IEEE Trans. Pattern Anal. and Mach. Intel., 9(5), pp. 628-633, 1987. % 3. W.F. Schmidt, D.F. Levelt, and R.P.W. Duin, An experimental comparison % of neural classifiers with traditional classifiers, in: E.S. Gelsema, % L.N. Kanal (eds.), Pattern Recognition in Practice IV, Elsevier, % 1994, 391-402. % % See also DATASETS, PRDATASETS, X80 % Copyright: R.P.W. Duin, r.p.w.duin@37steps.com % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function a = imox a = pr_getdata; a = setname(a,'IMOX Characters'); a = setlablist(a,char('I','M','O','X')); a = setfeatlab(a,char(... 'diagonal from top-left', ... 'vertical from top-center', ... 'diagonal from top-right', ... 'horizontal from right-center', ... 'diagonal from bottom-right', ... 'vertical from bottom-center', ... 'diagonal from bottom-left', ... 'horizontal from left-center'));