%BREAST 699 objects with 9 features in 2 classes % % X = BREAST; % % Breast cancer Wisconsin dataset obtained from the University of Wisconsin % Hospitals, Madison from Dr. William H. Wolberg. % % REFERENCE % O. L. Mangasarian and W. H. Wolberg: "Cancer diagnosis via linear % programming", SIAM News, Volume 23, Number 5, September 1990, pp 1 & 18. % % X = BREAST(VAL); % % Per default the missing values are replaced by -1. When you want to % do something else, use one of the options in missingvalues.m. function x = breast(val) prdatasets(mfilename,1,'http://prtools.org/prdatasets/breastorg.dat'); if nargin<1 val = -1; end user.desc='The original database of the Wisconsin Breast Cancer Databases from UCI, containing 699 instances, collected between 1989 and 1991. '; user.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/breast-cancer-wisconsin/'; cl = {'benign' 'malignant'}; fl = {'Clump Thickness' 'Uniformity of Cell Size' ... 'Uniformity of Cell Shape' 'Marginal Adhesion' ... 'Single Epithelial Cell Size' 'Bare Nuclei' 'Bland Chromatin' ... 'Normal Nucleoli' 'Mitoses'}; a = load('breastorg.dat'); J = find(a==-1); a(J) = NaN; nlab = a(:,end)/2; % the labels for the classes are (2,4), very strange x = pr_dataset(a(:,2:(end-1)), cl(nlab) ); x = setfeatlab(x,fl); x = setname(x,'Breast Wisconsin'); [x,msg] = prmissingvalues(x,val); user.desc = [user.desc msg]; x = setuser(x,user); return