1 | %ARRHYTHMIA 452 objects with 279 features in 13 classes |
---|
2 | % |
---|
3 | % X = ARRHYTHMIA(VAL) |
---|
4 | % |
---|
5 | % The aim is to distinguish between the presence and absence of cardiac |
---|
6 | % arrhythmia and to classify it in one of the 13 groups. Class 1 refers |
---|
7 | % to 'normal' ECG classes 2 to 13 refer to different classes of |
---|
8 | % arrhythmia. |
---|
9 | % |
---|
10 | % By default features with missing values are removed. When something else |
---|
11 | % is desired, use one of the options in MISVAL for VAL. |
---|
12 | % |
---|
13 | % SEE ALSO <a href="http://prtools.tudelft.nl/prtools/">PRTools Guide</a>, <a href="http://archive.ics.uci.edu/ml/">UCI Website</a> |
---|
14 | % PRTOOLS, DATASETS, MISVAL |
---|
15 | |
---|
16 | % Copyright: R.P.W. Duin |
---|
17 | |
---|
18 | function a = arrhythmia(val) |
---|
19 | |
---|
20 | if nargin < 1, val = 'f-remove'; end |
---|
21 | a = pr_loadmatfile; |
---|
22 | if isempty(a) |
---|
23 | opt.delimeter = ' '; |
---|
24 | opt.labfeat = 280; |
---|
25 | fl = {'age' 'sex' 'height' 'weight' 'QRS duration' 'P-R interval' ... |
---|
26 | 'Q-T interval' 'T interval' 'P interval' 'QRS' 'T' 'P' 'QRST' ... |
---|
27 | 'J' 'heartrate'}; |
---|
28 | fl1 = {'Q wave width' 'R wave width' 'S wave width' 'R'' wave width' ... |
---|
29 | 'S'' wave width' 'number of intrinsic deflections' ... |
---|
30 | 'ragged R wave' 'diphasic derivation of R wave' ... |
---|
31 | 'ragged P wave' 'diphasic derivation of P wave' ... |
---|
32 | 'ragged T wave' 'diphasic derivation of T wave'}; |
---|
33 | fl = [fl strcat('DI-',fl1) strcat('DII-',fl1) strcat('DIII-',fl1) ... |
---|
34 | strcat('AVR-',fl1) strcat('AVL-',fl1) strcat('AVF-',fl1) ... |
---|
35 | strcat('V1-',fl1) strcat('V2-',fl1) strcat('V3-',fl1) ... |
---|
36 | strcat('V4-',fl1) strcat('V5-',fl1) strcat('V6-',fl1)]; |
---|
37 | fl2 = {'JJ wave ampl' 'Q wave ampl' 'R wave ampl' ... |
---|
38 | 'S wave ampl' 'R'' wave ampl' 'S'' wave ampl' 'P wave ampl' ... |
---|
39 | 'T wave ampl' 'QRSA sum' 'QRSTA'}; |
---|
40 | fl = [fl strcat('DI-',fl2) strcat('DII-',fl2) strcat('DIII-',fl2) ... |
---|
41 | strcat('AVR-',fl2) strcat('AVL-',fl2) strcat('AVF-',fl2) ... |
---|
42 | strcat('V1-',fl2) strcat('V2-',fl2) strcat('V3-',fl2) ... |
---|
43 | strcat('V4-',fl2) strcat('V5-',fl2) strcat('V6-',fl2)]; |
---|
44 | opt.featnames = fl; |
---|
45 | opt.dsetname = 'Arrhythmia normal'; |
---|
46 | % opt.classnames = {'benign' 'malignant'}; |
---|
47 | opt.desc=['The Arrhymthmia database from UCI. The aim is to ' ... |
---|
48 | 'distinguish between the presence and absence of cardiac ' ... |
---|
49 | 'arrhythmia and to classify it in one of the 16 groups.']; |
---|
50 | opt.link = 'ftp://ftp.ics.uci.edu/pub/machine-learning-databases/arrhythmia'; |
---|
51 | a = pr_download('http://prtools.tudelft.nl/prdatasets/arrhythmia.dat',[],opt); |
---|
52 | end |
---|
53 | a = misval(a,val); |
---|
54 | |
---|
55 | return |
---|