% load the data: load cells; % settings: g_s = [1 2 3 5]; % scale g_f = [0.1 0.3]; %freq g_d = [0 0.25 0.5 0.75]*pi; % direction % other ns = length(g_s); nd = length(g_d); nf = length(g_f); % compute feature for train and test: dim = ns*nd*nf; N = size(x,1); for i=1:N i % get image data from green channel: %im = x{i,1}(:,:,2); im = sum(x{i,1}(:,:,2),3); if (min(im(:))<0) error('pixel values < 0'); end % im = im/max(im(:)); im = double(hist_equalize(im)); %newx: newx = zeros(size(im,1),size(im,2),dim+1); newx(:,:,1) = im; % get gabor features j=1; for i1=1:ns for i2=1:nf for i3=1:nd j=j+1; newx(:,:,j) = abs(gabor(im,g_s(i1),g_f(i2),g_d(i3))); end end end x{i,1} = newx; end M = size(z,1); for i=1:M i % get image data from green channel: %im = z{i,1}(:,:,2); im = sum(z{i,1}(:,:,2),3); if (min(im(:))<0) error('pixel values < 0'); end % im = im/max(im(:)); im = double(hist_equalize(im)); %newz: newz = zeros(size(im,1),size(im,2),dim+1); newz(:,:,1) = im; % get gabor features j=1; for i1=1:ns for i2=1:nf for i3=1:nd j=j+1; newz(:,:,j) = abs(gabor(im,g_s(i1),g_f(i2),g_d(i3))); end end end z{i,1} = newz; end save cells_gabor x z;