% what do the simple approaches give? load cellssimplemax; %load cells_lbp_gauss3; gencellsimple xtrain = a; xtest = b; a = [a;b]; %% add the different orientations... %b = a(:,1); %for i=0:7 % I = 1+((i*4):(i*4+3)); % b = [b mean(a(:,I),2)]; %end %b = a; %a = a(:,[1:5]); % param: %u = scalem([],'variance')*knnc([],1); %u = fisherm([],4)*knnc; %u = scalem([],'variance')*parzenc; %u = fisherc; %u = ldc; u = scalem([],'variance')*libsvc; % train and test: w = xtrain*u; error_on_testset = xtest*w*testd % crossval on a: imlab = getident(a,'image'); [nlab,baglab] = renumlab(imlab); nrfolds = length(baglab); % leave one image out e = zeros(nrfolds,1); Iall = (1:size(nlab,1))'; for i=1:nrfolds Jtst = find(nlab==i); Jtrn = Iall; Jtrn(Jtst)=[]; x = a(Jtrn,:); z = a(Jtst,:); % f(i) = find(classsizes(z)>0) w = x*u; e(i,1) = z*w*testd; end e mean(e) error_on_testset