% what do the simple approaches give? load cellssimplevar; gaborvar_train = a; gaborvar_test = b; load cellssimplemax; gabormax_train = a; gabormax_test = b; load cellssimplemean; gabormean_train = a; gabormean_test = b; gabor_data=[gabor_train;gabor_test]; load cells_lbp_mask; gencellsimple lbp_train = a; lbp_test = b; load cells_lbp_gauss3; gencellsimple lbpold_train = a; lbpold_test = b; % param: %dim_gabor = size(gabor_train,2); %dim_lbp = size(lbp_train,2); %dim = dim_gabor+dim_lbp; %u = [featsel(dim,1:dim_gabor)*ldc featsel(dim,dim_gabor+(1:dim_lbp))*ldc]*meanc; %u = fisherm([],4)*knnc; %u = combinerm(ldc([],0,1e-5),gaborvar_train,gabormax_train,gabormean_train,lbp_train,lbpold_train)*ldc([],0,1e-5); u = combinerm(loglc2,gaborvar_train,gabormax_train,gabormean_train,lbp_train,lbpold_train)*maxc; %u = knnc; u = loglc2; u = scalem([],'variance')*libsvc; % train and test: w = [gaborvar_train gabormax_train gabormean_train lbp_train lbpold_train]*u; error_on_testset = [gaborvar_test gabormax_test gabormean_test lbp_test lbpold_test]*w*testc % crossval on all data a: a = [[gaborvar_train;gaborvar_test] [gabormax_train;gabormax_test] ... [gabormean_train;gabormean_test] [lbp_train;lbp_test] ... [lbpold_train;lbpold_test]]; imlab = getident(a,'image'); [nlab,baglab] = renumlab(imlab); nrfolds = length(baglab); % leave one image out e = zeros(nrfolds,1); Iall = (1:size(nlab,1))'; for i=1:nrfolds Jtst = find(nlab==i); Jtrn = Iall; Jtrn(Jtst)=[]; i x = a(Jtrn,:); z = a(Jtst,:); %f(i) = find(classsizes(z)>0) w = x*u; e(i,1) = z*w*testd; %e(i,1) end e mean(e) error_on_testset