Line | |
---|
1 | % VAT Visual Assessment of cluster Tendency for dissimilarity matrices |
---|
2 | % |
---|
3 | % DN = VAT(D) |
---|
4 | % |
---|
5 | % INPUT |
---|
6 | % D NxN symmetric dissimilarity matrix (dataset) |
---|
7 | % |
---|
8 | % OUTPUT |
---|
9 | % P Order of elements |
---|
10 | % DN Reorded and scaled dissimilarity matrix |
---|
11 | % |
---|
12 | % DESCRIPTION |
---|
13 | % Visualization of the distance matrix to emphasize cluster tendencies |
---|
14 | % by reordering the rows and columns in the distance matrix. |
---|
15 | % |
---|
16 | % REFERENCE |
---|
17 | % R.J.Hathaway, J.C.Bezdek, J.M.Huband, "Scalable visual assessment of |
---|
18 | % cluster tendency for large data sets", Pattern Recognition, vol. 39, |
---|
19 | % no. 7, 2006. |
---|
20 | % |
---|
21 | |
---|
22 | % Copyright: Pavel Paclik, Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
23 | % Faculty EWI, Delft University of Technology and |
---|
24 | % School of Computer Science, University of Manchester |
---|
25 | |
---|
26 | |
---|
27 | function [P,DN] = vat(D) |
---|
28 | |
---|
29 | D = +D; |
---|
30 | n = size(D,1); |
---|
31 | K = (1:n)'; |
---|
32 | I = []; |
---|
33 | J = []; |
---|
34 | P = []; |
---|
35 | |
---|
36 | [i,j] = mmind(D,'max'); |
---|
37 | |
---|
38 | P(1) = i(1); |
---|
39 | I = i(1); |
---|
40 | J = setdiff(K,I); |
---|
41 | |
---|
42 | for r=2:n |
---|
43 | [i,j] = mmind(D(I,J),'min'); |
---|
44 | i = I(i(1)); |
---|
45 | j = J(j(1)); |
---|
46 | |
---|
47 | P = [P; j]; |
---|
48 | I = [I; j]; |
---|
49 | J = setdiff(J,j); |
---|
50 | end |
---|
51 | if nargout >1 |
---|
52 | DN = D(P,P); |
---|
53 | |
---|
54 | % make linear stretch |
---|
55 | mi = min(min(D)); |
---|
56 | ma = max(max(D)); |
---|
57 | k = 256/(ma-mi); |
---|
58 | DN = floor(k*DN-mi*k); |
---|
59 | end |
---|
60 | return |
---|
61 | |
---|
62 | |
---|
63 | |
---|
64 | |
---|
65 | function [i,j] = mmind(A,FUNC) |
---|
66 | % Return all indices that are maximum (minimum) in the matrix. |
---|
67 | % Function is specified by the FUNC string. |
---|
68 | |
---|
69 | eval(['[m,ind]=' FUNC '(' FUNC '(A));']); |
---|
70 | ind = find(A==m(1)); |
---|
71 | [i,j] = ind2sub(size(A),ind); |
---|
72 | return |
---|
Note: See
TracBrowser
for help on using the repository browser.