source: distools/tqdc.m @ 99

Last change on this file since 99 was 79, checked in by bduin, 11 years ago
File size: 4.3 KB
Line 
1%TQDC Trade-off Quadratic Discriminant (Regularized Bayes Normal Classifier)
2%
3%   W = TQDC(A,ALF,R,S,DIM)
4%
5% INPUT
6%   A   NxK dataset (N points in a K-dimensional space)
7%   ALF Trade-off parameter, ALF in [0,1] (optional; default: ALF = 0.1)
8%   R,S Additional regularization parameters, 0 <= R,S <= 1
9%       (optional; default: no regularization, i.e. R,S = 0)
10%   DIM Dimension of subspace structure in covariance matrix (default: K)
11%
12% OUTPUT
13%   W   Quadratic Bayes Normal Classifier mapping
14%
15% DESCRIPTION
16% Computation of the quadratic classifier between the classes of the dataset
17% A assuming normal densities. Each class covariance matrix Gi (i=1..C) is
18% modeled as a convex combination between the original class covariance Gi and
19% the diagonal marix Gdiag retrieved from the overall weighted (by priors)
20% covariance matrix. So,
21%     Gi = (1-ALF)*Gi + ALF*Gdiag
22% If ALF=0, then you will get QDC.
23% If ALF=1, then you will get NMSC.
24%
25% R and S (0 <= R,S <= 1) are additional parameters used for regularizing the
26% resulting covariance matrices by
27%     Gi = (1-R-S)*Gi + R*diag(diag(Gi)) + S*mean(diag(Gi))*eye(size(Gi,1))
28% This covariance matrix is then decomposed as Gi = W*W' + sigma^2 * eye(K),
29% where W is a KxM matrix containing the M leading principal components.
30%
31% The use of soft labels is supported. The classification A*W is computed by
32% NORMAL_MAP.
33%
34% DEFAULT
35% ALF = 0.1
36% R   = 0
37% S   = 0
38% DIM = K (data dimension)
39%
40% EXAMPLES
41% PREX_MCPLOT, PREX_PLOTC.
42%
43% REFERENCES
44% 1. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification, 2nd
45% edition, John Wiley and Sons, New York, 2001.
46% 2. A. Webb, Statistical Pattern Recognition, John Wiley & Sons,
47% New York, 2002.
48%
49% SEE ALSO
50% MAPPINGS, DATASETS, NMC, NMSC, LDC, UDC, QDC, QUADRC, NORMAL_MAP
51
52% Copyright: R.P.W. Duin, E. Pekalska, D.M.J. Tax and P. Paclik
53% ela.pekalska@googlemail.com
54% Faculty EWI, Delft University of Technology and
55% School of Computer Science, University of Manchester
56
57
58function w = tqdc(a,alf,r,s,dim)
59
60if (nargin < 5)
61  prwarning(4,'Subspace dimensionality DIM not provided, assuming K.');
62  dim = [];
63end
64if (nargin < 4)
65  prwarning(4,'Regularisation parameter S not given, assuming 0.');
66  s = 0;
67end
68if (nargin < 3)
69  prwarning(4,'Regularisation parameter R not given, assuming 0.');
70  r = 0;
71end
72if (nargin < 2)
73  prwarning(4,'Trade-off parameter ALF not given, assuming 0.1.');
74  alf = 0.1;
75end
76
77% No input arguments: return an UNTRAINED mapping
78if (nargin < 1) | (isempty(a))
79  w = prmapping(mfilename,{alf,r,s,dim});
80  w = setname(w,'Trade-off Bayes-Normal-2');
81  return
82end
83
84
85% TRAIN the classifier
86islabtype(a,'crisp','soft');
87isvaldset(a,2,2);        % at least 2 objects per class and 2 classes
88
89[m,k,c] = getsize(a);
90
91% If the subspace dimensionality is not given, set it to the data dimensionality.
92if (isempty(dim)),
93  dim = k;
94end
95
96if (dim < 1) | (dim > k)
97  error ('Number of dimensions DIM should lie in the range [1,K].');
98end
99
100% Assert whether A has the right labtype.
101islabtype(a,'crisp','soft');
102
103% Get mean vectors and class covariance matrices.
104[U,G] = meancov(a);
105
106% Calculate means and priors.
107pars.mean  = +U;
108pars.prior = getprior(a);
109
110% in the NMSC limit:
111Gtot = zeros(c,k);
112for j = 1:c
113  Gtot(j,:) = diag(G(:,:,j))';
114end
115Gtot = diag(pars.prior*Gtot);
116
117% Calculate class covariance matrices.
118
119pars.cov   = zeros(k,k,c);
120for j = 1:c
121  F = G(:,:,j);
122  F = (1-alf)*F + alf*Gtot;
123
124  % Regularize, if requested.
125  if (s > 0) | (r > 0)
126    F = (1-r-s) * F + r * diag(diag(F)) +s*mean(diag(F))*eye(size(F,1));
127  end
128
129  % If DIM < K, extract the first DIM principal components and estimate
130  % the noise outside the subspace.
131
132  if (dim < k)
133    [eigvec,eigval] = preig(F);
134    eigval = diag(eigval);
135    [dummy,ind] = sort(-eigval);
136
137    % Estimate sigma^2 as avg. eigenvalue outside subspace.
138    sigma2 = mean(eigval(ind(dim+1:end)));
139
140    % Subspace basis: first DIM eigenvectors * sqrt(eigenvalues).
141    F = eigvec(:,ind(1:dim)) * diag(eigval(ind(1:dim))) * eigvec(:,ind(1:dim))' + sigma2 * eye(k);
142  end
143  pars.cov(:,:,j) = F;
144end
145
146w = prmapping('normal_map','trained',pars,getlab(U),k,c);
147w = setname(w,'Trade-off Bayes-Normal-2');
148w = setcost(w,a);
149
150return;
Note: See TracBrowser for help on using the repository browser.