%SPHEM Spherical Embedding % % [W,SIG,L] = SPHEM(D,R,ALF) % OR % [W,SIG,L] = SPHEM(W,ALF) % % INPUT % D NxN symmetric dissimilarity matrix (dataset) % W Trained linear embedding into a pseudo-Euclidean space % ALF Parameter determining the dimensionality and the mapping (optional, defaulf: Inf) % (0,1) - fraction of the total (absolute value) preserved variance % Inf - no dimensionality reduction, keeping all dimensions (it's noisy) % 'p' - projection into a Euclidean space based on positive eigenvalues only % 'PARp' - projection into a Euclidean space based on the PAR fraction of % positive eigenvalues; e.g. ALF = '0.9p' % 'n' - projection into a Euclidean space based on negative eigenvalues only % 'PARn' - projection into a (negative) Euclidean space based on the PAR fraction % of negative eigenvalues; e.g. ALF = '0.7n' % 'P1pP2n'- projection into a Euclidean space based on the P1 positive eigenvalues % and P2 negative eigenvalues; e.g. ALF = '0.7p0.1n', ALF = '7p2n' % 1 .. N - number of dimensions in total % [P1 P2] - P1 dimensions or preserved fraction of variance in the positive subspace % and P2 dimensions or preserved fraction of variance in the negative % subspace; e.g. ALF = [5 10], ALF = [0.9 0.1] % P Integer between 0 and N specifying which object is mapped at the origin; % 0 stands for the mean; (optional, default: 0) % % OUTPUT % W Linear embedding into a pseudo-Euclidean space % SIG Signature of the space % L List of eigenvalues % % DESCRIPTION % Linear mapping W onto an M-dimensional pseudo-Euclidean subspace from a symmetric, % square dissimilarity matrix D such that the dissimilarities are preserved. M % M is determined by ALF. E.g., the subspace is found such that at least a fraction % ALF of the total variance is preserved for ALF in (0,1). The resulting X is found % by D*W. The parameter SIG describes the signature of the subspace. L is a sorted % list of eigenvalues describing the variances in the (pseudo-)Euclidean space. % % A trained mapping can be reduced further by: % [W,SIG,L] = SPHEM(D,ALF) % % SEE ALSO % MAPPINGS, DATASETS, PSEM, AUGPSEM, PCA % % LITERATURE % 1. L. Goldfarb, A unified approach to pattern recognition, Pattern Recognition, vol.17, 575-582, 1984. % 2. E. Pekalska, P. Paclik, and R.P.W. Duin, A Generalized Kernel Approach to Dissimilarity-based % Classification, Journal of Machine Learning Research, vol.2, no.2, 175-211, 2002. % % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com % Faculty EWI, Delft University of Technology and % School of Computer Science, University of Manchester function [W,sig,L,Q] = sphem(d,R,alf,prec) if nargin < 4 | isempty(prec), prec = 1e-4; end if nargin < 3 | isempty(alf), alf = inf; end if nargin < 2 | isempty(R), R = 1; end if nargin < 1 | isempty(d), W = mapping(mfilename,{R,alf,prec}); W = setname(W,'Spherical embedding'); return end if (isdataset(d) | isa(d,'double')) if ismapping(R) % APPLY THE MAPPING pars = getdata(R); [m,n] = size(d); R = pars{1}; % radius Q = pars{2}; % Eigenvectors L = pars{3}; % Eigenvalues W = R^2*(cos(+d/R)) * Q * diag(sqrt(abs(L))./L); if isdataset(d), W = dataset(W,getlab(d),'prior',getprior(d)); % Store signature in the USER field W.user = pars{4}; % Signature W.name = ['Projected ' updname(d.name)]; end return end end % REDUCE ALREADY TRAINED MAPPING if ismapping(d) pars = getdata(d); R = pars{1}; % radius Q = pars{2}; % Eigenvectors L = pars{3}; m = size(Q,1); [ll,K] = sort(-abs(L)); L = L(K); Q = Q(:,K); [J,sig] = seleigs(L,alf,pars{5}); Q = Q(:,J); % Eigenvectors L = L(J); % Eigenvalues W = mapping(mfilename,'trained',{R,Q,L,pars{4},pars{5}},[],m,length(J)); W = setname(W,'Spherical embedding'); return end % TRAIN THE MAPPING % Tolerance value used in comparisons if mean(+d(:)) < 1, tol = 1e-12; else tol = 1e-10; end if R <= 0, error('R should be positive.'); end [n,m] = size(d); if ~issym(d,tol), prwarning(1,'Matrix should be symmetric. It is made symmetric by averaging.') d = 0.5*(d+d'); end B = R^2*cos(+d/R); B = 0.5*(B+B'); % Make sure B is symmetric [Q, L] = preig(B); Q = real(Q); l = diag(real(L)); [lm,Z] = sort(-abs(l)); Q = Q(:,Z); l = l(Z); % Eigenvalues are sorted by decreasing absolute value [J,sig] = seleigs(l,alf,prec);% J is the index of the selected eigenvalues L = l(J); % Eigenvalues Q = Q(:,J); % Eigenvectors W = mapping(mfilename,'trained',{R,Q,L,sig,prec},[],m,sum(sig)); W = setname(W,'Spherical embedding'); return