%SELCDAT Select Class Subset from a Square Dissimilarity Dataset % % [DN,J] = SELCDAT(D,C) % % INPUT % A NxN Dissimilarity Dataset % C Indices of classes % % OUTPUT % DN Subset of the dataset D % J Indices of the selected objects % % DESCRIPTION % The classes listed in C (numerically) are extracted for the square % dissimilarity matrix D by both, their rows (objects) as well as their % columns (features). % Copyright: R.P.W. Duin, r.p.w.duin@prtools.org, and % Elzbieta Pekalska, ela.pekalska@googlemail.com % Faculty EWI, Delft University of Technology and % School of Computer Science, University of Manchester function [D,J] = selcdat(D,n) issquare(D); if nargin < 2, return, end J = []; c = getsize(D,3); if (any(n > c)) error('Not that many classes') end for j=1:length(n) J = [J; findnlab(D,n(j))]; end D = remclass(D(J,J)); return;