%SAMDISTM Distance matrix based on Spectral Angular Mapper (SAM) % distance, which is also the spherical geodesic distance % % D = SAMDISTM (A,B,R) % OR % D = SAMDISTM (A,B) % OR % D = SAMDISTM (A,R) % OR % D = SAMDISTM (A) % % INPUT % A NxK matrix (dataset) % B MxK matrix (dataset) % R Radius (optional, default: 1) % % OUTPUT % D NxM dissimilarity matrix (dataset) % % DESCRIPTION % Computes the distance matrix D between two sets of vectors, A and B. % Distances between vectors X and Y are computed based on the spherical % geodesic formula: % D(X,Y) = R arcos (X'Y/R^2) % X and Y are normalized to a unit length. % % If A and B are datasets, then D is a dataset as well with the labels defined % by the labels of A and the feature labels defined by the labels of B. If A is % not a dataset, but a matrix of doubles, then D is also a matrix of doubles. % % DEFAULT % R = 1 % % REMARKS % A square SAM-distance D(A,A) for a finite set A can be proved to be % the l_1-distance (LPDISTM). D(A,A).^{1/2} has a Euclidean behavior, so % it can be embedded by PSEM in a Euclidean space. % % SEE ALSO % JACSIMDISTM, CORRDISTM, LPDISTM, DISTM % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com % Faculty EWI, Delft University of Technology and % School of Computer Science, University of Manchester function D = samdistm (A,B,r) bisa = 0; if nargin < 2, r = 1; B = A; bisa = 1; else if nargin < 3, if max (size(B)) == 1, r = B; B = A; bisa = 1; else r = 1; end end end if r <= 0, error ('The parameter R must be positive.'); end isda = isdataset(A); isdb = isdataset(B); a = +A; b = +B; [ra,ca] = size(a); [rb,cb] = size(b); if ca ~= cb, error ('The matrices should have the same number of columns.'); end aa = sum(a.*a,2); bb = sum(b.*b,2)'; D = (a*b') ./sqrt(aa(:,ones(rb,1)) .* bb(ones(ra,1),:)); D = r * acos(D/r^2); % Check numerical inaccuracy D (find (D < eps)) = 0; % Make sure that distances are nonnegative if bisa, D = 0.5*(D+D'); % Make sure that distances are symmetric for D(A,A) end % Set object labels and feature labels if xor(isda, isdb), prwarning(1,'One matrix is a dataset and the other not. ') end if isda, if isdb, D = setdata(A,D,getlab(B)); else D = setdata(A,D); end D.name = 'Distance matrix'; if ~isempty(A.name) D.name = [D.name ' for ' A.name]; end end return