[10] | 1 | %SAMDISTM Distance matrix based on Spectral Angular Mapper (SAM) |
---|
| 2 | % distance, which is also the spherical geodesic distance |
---|
| 3 | % |
---|
| 4 | % D = SAMDISTM (A,B,R) |
---|
| 5 | % OR |
---|
| 6 | % D = SAMDISTM (A,B) |
---|
| 7 | % OR |
---|
| 8 | % D = SAMDISTM (A,R) |
---|
| 9 | % OR |
---|
| 10 | % D = SAMDISTM (A) |
---|
| 11 | % |
---|
| 12 | % INPUT |
---|
| 13 | % A NxK matrix (dataset) |
---|
| 14 | % B MxK matrix (dataset) |
---|
| 15 | % R Radius (optional, default: 1) |
---|
| 16 | % |
---|
| 17 | % OUTPUT |
---|
| 18 | % D NxM dissimilarity matrix (dataset) |
---|
| 19 | % |
---|
| 20 | % DESCRIPTION |
---|
| 21 | % Computes the distance matrix D between two sets of vectors, A and B. |
---|
| 22 | % Distances between vectors X and Y are computed based on the spherical |
---|
| 23 | % geodesic formula: |
---|
| 24 | % D(X,Y) = R arcos (X'Y/R^2) |
---|
| 25 | % X and Y are normalized to a unit length. |
---|
| 26 | % |
---|
| 27 | % If A and B are datasets, then D is a dataset as well with the labels defined |
---|
| 28 | % by the labels of A and the feature labels defined by the labels of B. If A is |
---|
| 29 | % not a dataset, but a matrix of doubles, then D is also a matrix of doubles. |
---|
| 30 | % |
---|
| 31 | % DEFAULT |
---|
| 32 | % R = 1 |
---|
| 33 | % |
---|
| 34 | % REMARKS |
---|
| 35 | % A square SAM-distance D(A,A) for a finite set A can be proved to be |
---|
| 36 | % the l_1-distance (LPDISTM). D(A,A).^{1/2} has a Euclidean behavior, so |
---|
| 37 | % it can be embedded by PSEM in a Euclidean space. |
---|
| 38 | % |
---|
| 39 | |
---|
| 40 | % SEE ALSO |
---|
| 41 | % JACSIMDISTM, CORRDISTM, LPDISTM, DISTM |
---|
| 42 | |
---|
| 43 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
| 44 | % Faculty EWI, Delft University of Technology and |
---|
| 45 | % School of Computer Science, University of Manchester |
---|
| 46 | |
---|
| 47 | |
---|
| 48 | function D = samdistm (A,B,r) |
---|
| 49 | |
---|
| 50 | bisa = 0; |
---|
| 51 | if nargin < 2, |
---|
| 52 | r = 1; |
---|
| 53 | B = A; |
---|
| 54 | bisa = 1; |
---|
| 55 | else |
---|
| 56 | if nargin < 3, |
---|
| 57 | if max (size(B)) == 1, |
---|
| 58 | r = B; |
---|
| 59 | B = A; |
---|
| 60 | bisa = 1; |
---|
| 61 | else |
---|
| 62 | r = 1; |
---|
| 63 | end |
---|
| 64 | end |
---|
| 65 | end |
---|
| 66 | |
---|
| 67 | if r <= 0, |
---|
| 68 | error ('The parameter R must be positive.'); |
---|
| 69 | end |
---|
| 70 | |
---|
| 71 | isda = isdataset(A); |
---|
| 72 | isdb = isdataset(B); |
---|
| 73 | a = +A; |
---|
| 74 | b = +B; |
---|
| 75 | [ra,ca] = size(a); |
---|
| 76 | [rb,cb] = size(b); |
---|
| 77 | |
---|
| 78 | if ca ~= cb, |
---|
| 79 | error ('The matrices should have the same number of columns.'); |
---|
| 80 | end |
---|
| 81 | |
---|
| 82 | aa = sum(a.*a,2); |
---|
| 83 | bb = sum(b.*b,2)'; |
---|
| 84 | D = (a*b') ./sqrt(aa(:,ones(rb,1)) .* bb(ones(ra,1),:)); |
---|
| 85 | D = r * acos(D/r^2); |
---|
| 86 | |
---|
| 87 | % Check numerical inaccuracy |
---|
| 88 | D (find (D < eps)) = 0; % Make sure that distances are nonnegative |
---|
| 89 | if bisa, |
---|
| 90 | D = 0.5*(D+D'); % Make sure that distances are symmetric for D(A,A) |
---|
| 91 | end |
---|
| 92 | |
---|
| 93 | |
---|
| 94 | % Set object labels and feature labels |
---|
| 95 | if xor(isda, isdb), |
---|
| 96 | prwarning(1,'One matrix is a dataset and the other not. ') |
---|
| 97 | end |
---|
| 98 | if isda, |
---|
| 99 | if isdb, |
---|
| 100 | D = setdata(A,D,getlab(B)); |
---|
| 101 | else |
---|
| 102 | D = setdata(A,D); |
---|
| 103 | end |
---|
| 104 | D.name = 'Distance matrix'; |
---|
| 105 | if ~isempty(A.name) |
---|
| 106 | D.name = [D.name ' for ' A.name]; |
---|
| 107 | end |
---|
| 108 | end |
---|
| 109 | return |
---|