1 | %RANKDISTM Distance matrix between two data sets based on ranking |
---|
2 | % |
---|
3 | % D = RANKDISTM (A,B,P) |
---|
4 | % or |
---|
5 | % D = RANKDISTM (A,B) |
---|
6 | % or |
---|
7 | % D = RANKDISTM (A,P) |
---|
8 | % or |
---|
9 | % D = RANKDISTM (A) |
---|
10 | % |
---|
11 | % INPUT |
---|
12 | % A NxK Matrix or dataset |
---|
13 | % B MxK Matrix or dataset |
---|
14 | % P Parameter: |
---|
15 | % Integer - 1 .. K or 'MIN', 'MAX', 'MEDIAN' (optional; default: 'MEDIAN') |
---|
16 | % |
---|
17 | % OUTPUT |
---|
18 | % D NxM dissimilarity matrix or dataset |
---|
19 | % |
---|
20 | % DESCRIPTION |
---|
21 | % Computes the distance matrix D between two sets of vectors, A and B. |
---|
22 | % Given the vectors X and Y, distances are computed using the ranked |
---|
23 | % distance as: |
---|
24 | % D(X,Y) = P-th value of (sort {|X_1 - Y_1|, |X_2 - Y_2|,..,|X_K - Y_K|}) |
---|
25 | % |
---|
26 | % For instance, for P = 1, the ranked distance becomes the minimum value of |
---|
27 | % the differences |X_i - Y_i|, or for P = K, the infinty norm. |
---|
28 | % |
---|
29 | % If A and B are datasets, then D is a dataset as well with the labels defined |
---|
30 | % by the labels of A and the feature labels defined by the labels of B. If A is |
---|
31 | % not a dataset, but a matrix of doubles, then D is also a matrix of doubles. |
---|
32 | % |
---|
33 | % DEFAULT |
---|
34 | % P = 'MEDIAN' |
---|
35 | % |
---|
36 | % SEE ALSO |
---|
37 | % LPDISTM, EUDISTM, SIMDISTM, JACSIMDISTM, CORRDISTM, COSDISTM |
---|
38 | |
---|
39 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
40 | % Faculty EWI, Delft University of Technology and |
---|
41 | % School of Computer Science, University of Manchester |
---|
42 | |
---|
43 | |
---|
44 | function D = rankdistm (A,B,kk) |
---|
45 | bisa = 0; |
---|
46 | if nargin == 3, |
---|
47 | k = whichk(kk,ca); |
---|
48 | elseif nargin < 2, |
---|
49 | k = 0; % median |
---|
50 | B = A; |
---|
51 | bisa = 1; |
---|
52 | else |
---|
53 | k = whichk(B,ca); |
---|
54 | B = A; |
---|
55 | bisa = 1; |
---|
56 | end |
---|
57 | |
---|
58 | isda = isdataset(A); |
---|
59 | isdb = isdataset(B); |
---|
60 | a = +A; |
---|
61 | b = +B; |
---|
62 | |
---|
63 | [ra,ca] = size(a); |
---|
64 | [rb,cb] = size(b); |
---|
65 | |
---|
66 | if ca ~= cb, |
---|
67 | error ('The matrices should have the same number of columns.'); |
---|
68 | end |
---|
69 | |
---|
70 | |
---|
71 | D = zeros(ra,rb); |
---|
72 | switch k, |
---|
73 | case 0, |
---|
74 | for i=1:rb |
---|
75 | D(:,i) = median (abs(repmat(b(i,:),ra,1) - a),2); |
---|
76 | end |
---|
77 | % D = median((abs (repmat (permute(a,[1 3 2]), [1 rb 1]) - ... |
---|
78 | % repmat (permute(b,[3 1 2]), [ra 1 1]))),3); |
---|
79 | case 1, |
---|
80 | for i=1:rb |
---|
81 | D(:,i) = min (abs(repmat(b(i,:),ra,1) - a),[],2); |
---|
82 | end |
---|
83 | % D = min((abs (repmat (permute(a,[1 3 2]), [1 rb 1]) - ... |
---|
84 | % repmat (permute(b,[3 1 2]), [ra 1 1]))),[],3); |
---|
85 | case ra, |
---|
86 | for i=1:rb |
---|
87 | D(:,i) = max (abs(repmat(b(i,:),ra,1) - a),[],2); |
---|
88 | end |
---|
89 | % D = max((abs (repmat (permute(a,[1 3 2]), [1 rb 1]) - ... |
---|
90 | % repmat (permute(b,[3 1 2]), [ra 1 1]))),[],3); |
---|
91 | otherwise |
---|
92 | for i=1:rb |
---|
93 | aa = sort (abs(repmat(b(i,:),ra,1) - a),2); |
---|
94 | D(:,i) = aa(:,k); |
---|
95 | end |
---|
96 | % aa = sort (abs (repmat (permute(a,[1 3 2]), [1 rb 1]) - ... |
---|
97 | % repmat (permute(b,[3 1 2]), [ra 1 1])), 3); |
---|
98 | % D = aa(:,:,k); |
---|
99 | end |
---|
100 | |
---|
101 | % Check numerical inaccuracy |
---|
102 | D (find (D < eps)) = 0; % Make sure that distances are nonnegative |
---|
103 | if bisa, |
---|
104 | D = 0.5*(D+D'); % Make sure that distances are symmetric for D(A,A) |
---|
105 | end |
---|
106 | |
---|
107 | % Set object labels and feature labels |
---|
108 | if xor(isda, isdb), |
---|
109 | prwarning(1,'One matrix is a dataset and the other not. ') |
---|
110 | end |
---|
111 | if isda, |
---|
112 | if isdb, |
---|
113 | D = setdata(A,D,getlab(B)); |
---|
114 | else |
---|
115 | D = setdata(A,D); |
---|
116 | end |
---|
117 | D.name = 'Distance matrix'; |
---|
118 | if ~isempty(A.name) |
---|
119 | D.name = [D.name ' for ' A.name]; |
---|
120 | end |
---|
121 | end |
---|
122 | return |
---|
123 | |
---|
124 | |
---|
125 | |
---|
126 | |
---|
127 | function k = whichk(kk,ca) |
---|
128 | if isstr(kk), |
---|
129 | switch lower(kk), |
---|
130 | case 'min' |
---|
131 | k = 1; |
---|
132 | case 'max' |
---|
133 | k = ca; |
---|
134 | case 'median', |
---|
135 | k = 0; |
---|
136 | otherwise |
---|
137 | error ('Wrong parameter k.'); |
---|
138 | end |
---|
139 | elseif max(size(kk)) == 1, |
---|
140 | k = kk; |
---|
141 | else |
---|
142 | error ('Wrong parameter k.'); |
---|
143 | end |
---|
144 | |
---|
145 | if k < 0 | k > ca, |
---|
146 | error ('The parameter k, if an integer, must be positive and not larger then the number of features.'); |
---|
147 | end |
---|