%RANKDISTM Distance matrix between two data sets based on ranking % % D = RANKDISTM (A,B,P) % or % D = RANKDISTM (A,B) % or % D = RANKDISTM (A,P) % or % D = RANKDISTM (A) % % INPUT % A NxK Matrix or dataset % B MxK Matrix or dataset % P Parameter: % Integer - 1 .. K or 'MIN', 'MAX', 'MEDIAN' (optional; default: 'MEDIAN') % % OUTPUT % D NxM dissimilarity matrix or dataset % % DESCRIPTION % Computes the distance matrix D between two sets of vectors, A and B. % Given the vectors X and Y, distances are computed using the ranked % distance as: % D(X,Y) = P-th value of (sort {|X_1 - Y_1|, |X_2 - Y_2|,..,|X_K - Y_K|}) % % For instance, for P = 1, the ranked distance becomes the minimum value of % the differences |X_i - Y_i|, or for P = K, the infinty norm. % % If A and B are datasets, then D is a dataset as well with the labels defined % by the labels of A and the feature labels defined by the labels of B. If A is % not a dataset, but a matrix of doubles, then D is also a matrix of doubles. % % DEFAULT % P = 'MEDIAN' % % SEE ALSO % LPDISTM, EUDISTM, SIMDISTM, JACSIMDISTM, CORRDISTM, COSDISTM % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com % Faculty EWI, Delft University of Technology and % School of Computer Science, University of Manchester function D = rankdistm (A,B,kk) bisa = 0; if nargin == 3, k = whichk(kk,ca); elseif nargin < 2, k = 0; % median B = A; bisa = 1; else k = whichk(B,ca); B = A; bisa = 1; end isda = isdataset(A); isdb = isdataset(B); a = +A; b = +B; [ra,ca] = size(a); [rb,cb] = size(b); if ca ~= cb, error ('The matrices should have the same number of columns.'); end D = zeros(ra,rb); switch k, case 0, for i=1:rb D(:,i) = median (abs(repmat(b(i,:),ra,1) - a),2); end % D = median((abs (repmat (permute(a,[1 3 2]), [1 rb 1]) - ... % repmat (permute(b,[3 1 2]), [ra 1 1]))),3); case 1, for i=1:rb D(:,i) = min (abs(repmat(b(i,:),ra,1) - a),[],2); end % D = min((abs (repmat (permute(a,[1 3 2]), [1 rb 1]) - ... % repmat (permute(b,[3 1 2]), [ra 1 1]))),[],3); case ra, for i=1:rb D(:,i) = max (abs(repmat(b(i,:),ra,1) - a),[],2); end % D = max((abs (repmat (permute(a,[1 3 2]), [1 rb 1]) - ... % repmat (permute(b,[3 1 2]), [ra 1 1]))),[],3); otherwise for i=1:rb aa = sort (abs(repmat(b(i,:),ra,1) - a),2); D(:,i) = aa(:,k); end % aa = sort (abs (repmat (permute(a,[1 3 2]), [1 rb 1]) - ... % repmat (permute(b,[3 1 2]), [ra 1 1])), 3); % D = aa(:,:,k); end % Check numerical inaccuracy D (find (D < eps)) = 0; % Make sure that distances are nonnegative if bisa, D = 0.5*(D+D'); % Make sure that distances are symmetric for D(A,A) end % Set object labels and feature labels if xor(isda, isdb), prwarning(1,'One matrix is a dataset and the other not. ') end if isda, if isdb, D = setdata(A,D,getlab(B)); else D = setdata(A,D); end D.name = 'Distance matrix'; if ~isempty(A.name) D.name = [D.name ' for ' A.name]; end end return function k = whichk(kk,ca) if isstr(kk), switch lower(kk), case 'min' k = 1; case 'max' k = ca; case 'median', k = 0; otherwise error ('Wrong parameter k.'); end elseif max(size(kk)) == 1, k = kk; else error ('Wrong parameter k.'); end if k < 0 | k > ca, error ('The parameter k, if an integer, must be positive and not larger then the number of features.'); end