%PSPCA Pseudo-Euclidean Principal Component Analysis % % [W,SIG,L] = PSPCA(X,XSIG,ALF) % % INPUT % X NxK data % XSIG Signature of the input pseudo-Euclidean space; (default: [K 0]) % ALF Parameter determining the dimensionality and the mapping (optional, default: Inf) % (0,1) - fraction of the total (absolute value) preserved variance % Inf - no dimensionality reduction, keeping all dimensions (it's noisy) % 'p' - projection into a Euclidean space based on positive eigenvalues only % 'PARp' - projection into a Euclidean space based on the PAR fraction of % positive eigenvalues; e.g. ALF = '0.9p' % 'n' - projection into a Euclidean space based on negative eigenvalues only % 'PARn' - projection into a (negative) Euclidean space based on the PAR fraction % of negative eigenvalues; e.g. ALF = '0.7n' % 'P1pP2n'- projection into a Euclidean space based on the P1 positive eigenvalues % and P2 negative eigenvalues; e.g. ALF = '0.7p0.1n', ALF = '7p2n' % 1 .. N - number of dimensions in total % [P1 P2] - P1 dimensions or preserved fraction of variance in the positive subspace % and P2 dimensions or preserved fraction of variance in the negative % subspace; e.g. ALF = [5 10], ALF = [0.9 0.1] % % OUTPUT % W PCA mapping in a pseudo-Euclidean space % SIG Signature of the output pseudo-Euclidean space % L List of eigenvalues % % DEFAULT % XSIG = [K 0] % ALF = INF % % DESCRIPTION % PCA mapping W from a K-dimensional pseudo-Euclidean space to an M-dimensional % pseudo-Euclidean subspace. M is determined by ALF. The subspace is found, e.g. % such that at least a fraction ALF of the total variance is preserved for ALF % in (0,1). The resulting Y is found by X*W. The parameter SIG describes the % signature of the subspace. L is a sorted list of eigenvalues describing the % variances in the (pseudo-)Euclidean space. % % If X is a labeled dataset, then the averaged covariance matrix is weighted % by class priors. % % Note that a PCA decomposition in a pseudo-Euclidean space is different than in % a Euclidean space. Namely, CJ = Q*L*inv(Q), where CJ is a pseudo-Euclidean % covariance matrix computed such that CJ= C*J, where C is a Euclidean covariance % matrix, J is the fundamental symmetry (taking part in inner products). Q is % J-orthogonal, i.e. Q'*J*Q = J, hence inv(Q) = J*Q'*J. % % SEE ALSO % MAPPINGS, DATASETS, PCA, KPSEM, PSEM % % LITERATURE % 1. E. Pekalska, R.P.W. Duin, The Dissimilarity representation in Pattern Recognition. % Foundations and Applications. World Scientific, Singapore, 2005. % 2. L. Goldfarb, A unified approach to pattern recognition, Pattern Recognition, vol.17, 575-582, 1984. % % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com % Faculty EWI, Delft University of Technology and % School of Computer Science, University of Manchester function [W,outsig,L,Q] = pspca(a,sig,alf,prec) if nargin < 4 | isempty(prec), prec = 1e-4; end if nargin < 3 | isempty(alf), alf = inf; end if nargin < 2 | isempty(sig), sig = [size(a,1) 0]; end if nargin < 1 | isempty(a), W = mapping(mfilename,sig,alf,prec); W = setname(W,'Pseudo-Euclidean PCA'); return end if (isdataset(a) | isa(a,'double')), if ismapping(sig), % APPLY MAPPING: project new data using the trained mapping. [m,n] = size(a); pars = getdata(sig); % Parameters v = pars{1}; % Mapping that shifts data to the origin JQ = pars{2}; % J*Q sig = pars{3}; % Signature in the output space W = (a*v) * JQ; if isdataset(W), W.user = sig; W.name = updname(W.name); end return; end end % TRAIN THE MAPPING [m,k] = size(a); if m < 2, error('At least two objects are expected.'); end if sum(sig) ~= k, error('Signature does not fit the data dimensionality.') end isdset = isdataset(a); % Shift mean of data to the origin v = scalem(+a); aa = a*v; if ~isdset, % Unlabeled data A = +aa; else c = max(getnlab(aa)); if c == 0, A = +aa; else p = getprior(a); A = []; for j = 1:c A = [A; +seldat(aa,j)*p(j)]; end end end G = prcov(A); G = 0.5*(G+G'); % Make sure G is symmetric if sig(2) > 0, J = diag([ones(sig(1),1); -ones(sig(2),1)]); G = G*J; end [Q,L] = eig(G); Q = real(Q); l = diag(real(L)); [lm,Z] = sort(-abs(l)); Q = Q(:,Z); l = l(Z); [I,outsig] = seleigs(l,alf,prec); % I is the index of selected eigenvalues L = l(I); % Eigenvalues Q = Q(:,I); % Eigenvectors if sig(2) > 0, % Q is NOT orthogonal, but should be J-orthogonal, i.e. Q'*J*Q = J % Normalize Q to be J-orthogonal Q = Q*diag(1./sqrt(abs(diag(Q'*J*Q)))); Q = J*Q; end % Determine the mapping W = mapping(mfilename,'trained',{v,Q,outsig,sig},[],k,sum(outsig)); W = setname(W,'Pseudo-Euclidean PCA'); return