1 | %PSEM Pseudo-Euclidean Linear Embedding |
---|
2 | % |
---|
3 | % [W,SIG,L] = PSEM(D,ALF,P) |
---|
4 | % OR |
---|
5 | % [W,SIG,L] = PSEM(W,ALF) |
---|
6 | % |
---|
7 | % INPUT |
---|
8 | % D NxN symmetric dissimilarity matrix (dataset) |
---|
9 | % W Trained linear embedding into a pseudo-Euclidean space |
---|
10 | % ALF Parameter determining the dimensionality and the mapping (optional, default: Inf) |
---|
11 | % (0,1) - Fraction of the total (absolute value) preserved variance |
---|
12 | % Inf - No dimensionality reduction, keeping all dimensions (it's VERY noisy) |
---|
13 | % 'p' - Projection into a Euclidean space based on positive eigenvalues only |
---|
14 | % 'PARp' - Projection into a Euclidean space based on the PAR fraction of |
---|
15 | % positive eigenvalues; e.g. ALF = '0.9p' |
---|
16 | % 'n' - Projection into a Euclidean space based on negative eigenvalues only |
---|
17 | % 'PARn' - Projection into a (negative) Euclidean space based on the PAR fraction |
---|
18 | % of negative eigenvalues; e.g. ALF = '0.7n' |
---|
19 | % 'P1pP2n'- Projection into a Euclidean space based on the P1 positive eigenvalues |
---|
20 | % and P2 negative eigenvalues; e.g. ALF = '0.7p0.1n', ALF = '7p2n' |
---|
21 | % 1 .. N - Number of dimensions in total |
---|
22 | % [P1 P2] - P1 dimensions or preserved fraction of variance in the positive subspace |
---|
23 | % and P2 dimensions or preserved fraction of variance in the negative |
---|
24 | % subspace; e.g. ALF = [5 10], ALF = [0.9 0.1] |
---|
25 | % P Integer between 0 and N specifying which object is mapped at the origin; |
---|
26 | % 0 stands for the mean; (optional, default: 0) |
---|
27 | % |
---|
28 | % OUTPUT |
---|
29 | % W Linear embedding into a pseudo-Euclidean space |
---|
30 | % SIG Signature of the space |
---|
31 | % L List of eigenvalues |
---|
32 | % |
---|
33 | % DEFAULT |
---|
34 | % P = 0 |
---|
35 | % ALF = INF |
---|
36 | % |
---|
37 | % DESCRIPTION |
---|
38 | % Linear mapping W onto an M-dimensional pseudo-Euclidean subspace from a symmetric, |
---|
39 | % square dissimilarity matrix D such that the dissimilarities are preserved. M |
---|
40 | % M is determined by ALF. E.g., the subspace is found such that at least a fraction |
---|
41 | % ALF of the total variance is preserved for ALF in (0,1). The resulting X is found |
---|
42 | % by D*W. The parameter SIG describes the signature of the subspace. L is a sorted |
---|
43 | % list of eigenvalues describing the variances in the (pseudo-)Euclidean space. |
---|
44 | % |
---|
45 | % A trained mapping can be reduced further by: |
---|
46 | % [W,SIG,L] = PSEM(D,ALF) |
---|
47 | % |
---|
48 | % SEE ALSO |
---|
49 | % MAPPINGS, DATASETS, AUGPSEM, PCA |
---|
50 | % |
---|
51 | % LITERATURE |
---|
52 | % 1. L. Goldfarb, A unified approach to pattern recognition, Pattern Recognition, vol.17, |
---|
53 | % 575-582, 1984. |
---|
54 | % 2. E. Pekalska, P. Paclik, and R.P.W. Duin, A Generalized Kernel Approach to |
---|
55 | % Dissimilarity-based Classification, Journal of Machine Learning Research, |
---|
56 | % vol.2, no.2, 175-211, 2002. |
---|
57 | % |
---|
58 | |
---|
59 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
60 | % Faculty EWI, Delft University of Technology and |
---|
61 | % School of Computer Science, University of Manchester |
---|
62 | |
---|
63 | |
---|
64 | |
---|
65 | function [W,sig,L,Q] = psem(d,alf,pzero,prec) |
---|
66 | |
---|
67 | % PREC is the precision parameter used for the automatic |
---|
68 | % selection (heuristic) of the number of dominant eigenvalues. |
---|
69 | % This happens when SELEIGS is called with the parameter 'CUT'. |
---|
70 | |
---|
71 | if nargin < 4 | isempty(prec), |
---|
72 | prec = 1e-4; |
---|
73 | end |
---|
74 | if nargin < 3 | isempty(pzero), |
---|
75 | pzero = 0; |
---|
76 | end |
---|
77 | if nargin < 2 | isempty(alf), |
---|
78 | alf = inf; |
---|
79 | end |
---|
80 | if nargin < 1 | isempty(d), |
---|
81 | W = prmapping(mfilename,{alf,pzero,prec}); |
---|
82 | W = setname(W,'PE embedding'); |
---|
83 | return |
---|
84 | end |
---|
85 | |
---|
86 | |
---|
87 | |
---|
88 | if (isdataset(d) | isa(d,'double')) |
---|
89 | if ismapping(alf) |
---|
90 | % APPLY THE MAPPING |
---|
91 | pars = getdata(alf); |
---|
92 | [m,n] = size(d); |
---|
93 | d = d.^2; |
---|
94 | |
---|
95 | Q = pars{1}; % Eigenvectors |
---|
96 | me = pars{2}; % Vector of the average squared original dissimilarities |
---|
97 | p = pars{3}; % p=0 -> the mean of the embedded configuration lies at 0, otherwise, it lies at pzero |
---|
98 | L = pars{4}; % Eigenvalues |
---|
99 | |
---|
100 | % Project new data depending on p |
---|
101 | % (whether the mean or other object lies at the origin) |
---|
102 | if p == 0, |
---|
103 | H = -repmat(1,n,n)/n; |
---|
104 | H(1:n+1:end) = H(1:n+1:end) + 1; % H = eye(n) - ones(n,n)/n |
---|
105 | W = -0.5 * (d - me(ones(m,1),:)) * H * Q * diag(sqrt(abs(L))./L); |
---|
106 | else |
---|
107 | W = 0.5 * (d(:,p) * ones(1,n) + me(ones(m,1),:) - d) * Q * diag(sqrt(abs(L))./L); |
---|
108 | end |
---|
109 | |
---|
110 | % Store signature in the USER field |
---|
111 | if isdataset(W), |
---|
112 | W = setname(W,['Projected ' updname(W.name)]); |
---|
113 | W = setsig(W,pars{5}); |
---|
114 | end |
---|
115 | return |
---|
116 | end |
---|
117 | end |
---|
118 | |
---|
119 | |
---|
120 | |
---|
121 | % REDUCE A TRAINED MAPPING |
---|
122 | if ismapping(d) |
---|
123 | pars = getdata(d); |
---|
124 | Q = pars{1}; |
---|
125 | L = pars{4}; |
---|
126 | m = size(Q,1); |
---|
127 | |
---|
128 | [ll,K] = sort(-abs(L)); |
---|
129 | L = L(K); |
---|
130 | Q = Q(:,K); |
---|
131 | [J,sig] = seleigs(L,alf,pars{6}); |
---|
132 | Q = Q(:,J); % Eigenvectors |
---|
133 | L = L(J); % Eigenvalues |
---|
134 | |
---|
135 | W = prmapping(mfilename,'trained',{Q, pars{2},pars{3},L,pars{5},pars{6}},[],m,length(J)); |
---|
136 | W = setname(W,'PE embedding'); |
---|
137 | return |
---|
138 | end |
---|
139 | |
---|
140 | |
---|
141 | |
---|
142 | % TRAIN THE MAPPING |
---|
143 | % Tolerance value used in comparisons |
---|
144 | if mean(+d(:)) < 1, |
---|
145 | tol = 1e-12; |
---|
146 | else |
---|
147 | tol = 1e-10; |
---|
148 | end |
---|
149 | |
---|
150 | [n,m] = size(d); |
---|
151 | if ~issym(d,tol), |
---|
152 | prwarning(1,'Matrix should be symmetric. It is made symmetric by averaging.') |
---|
153 | d = 0.5*(d+d'); |
---|
154 | end |
---|
155 | |
---|
156 | if pzero > n, |
---|
157 | error('Wrong third parameter.'); |
---|
158 | end |
---|
159 | |
---|
160 | d = (+d).^2; |
---|
161 | |
---|
162 | if pzero == 0, |
---|
163 | % Project the data such that the mean lies at the origin |
---|
164 | H = -repmat(1/n,n,n); |
---|
165 | H(1:n+1:end) = H(1:n+1:end) + 1; % H = eye(n) - ones(n,n)/n |
---|
166 | H = -0.5 * H * d * H; % H is now the matrix of inner products |
---|
167 | else |
---|
168 | % Project the data such that pzero's object lies at the origin |
---|
169 | H = 0.5 * (d(:,pzero) * ones(1,n) + ones(n,1) * d(:,pzero)' - d); |
---|
170 | end |
---|
171 | H = 0.5*(H+H'); % Make sure H is symmetric |
---|
172 | |
---|
173 | [Q,L] = preig(H); |
---|
174 | Q = real(Q); |
---|
175 | l = diag(real(L)); |
---|
176 | [lm,Z] = sort(-abs(l)); |
---|
177 | Q = Q(:,Z); |
---|
178 | l = l(Z); % Eigenvalues are sorted by decreasing absolute value |
---|
179 | |
---|
180 | [J,sig] = seleigs(l,alf,prec); % J is the index of the selected eigenvalues |
---|
181 | L = l(J); % Eigenvalues |
---|
182 | Q = Q(:,J); % Eigenvectors |
---|
183 | |
---|
184 | %A = Q * diag(sqrt(abs(L))); % Data in a pseudo-Euclidean space |
---|
185 | |
---|
186 | % Determine the mapping depending on pzero |
---|
187 | if pzero == 0, |
---|
188 | W = prmapping(mfilename,'trained',{Q,mean(+d,2)',pzero,L,sig,prec},[],m,sum(sig)); |
---|
189 | else |
---|
190 | W = prmapping(mfilename,'trained',{Q,+d(:,pzero)',pzero,L,sig,prec},[],m,sum(sig)); |
---|
191 | end |
---|
192 | W = setname(W,'PE embedding'); |
---|
193 | return |
---|