[10] | 1 | %PSDISTM Square Pseudo-Euclidean Distance Between Two Datasets |
---|
| 2 | % |
---|
| 3 | % D = PSDISTM(A,SIG) |
---|
| 4 | % OR |
---|
| 5 | % D = PSDISTM(A,B,SIG) |
---|
| 6 | % |
---|
| 7 | % INPUT |
---|
| 8 | % A NxK Matrix or dataset |
---|
| 9 | % B MxK Matrix or dataset |
---|
| 10 | % SIG 2x1 vector being the signature of the pseudo-Euclidean space; |
---|
| 11 | % SIG(1)+SIG(2)=K |
---|
| 12 | % |
---|
| 13 | % OUTPUT |
---|
| 14 | % D NxM dissimilarity matrix or dataset |
---|
| 15 | % |
---|
| 16 | % DESCRIPTION |
---|
| 17 | % Computation of the square pseudo-Euclidean distance matrix D between two sets |
---|
| 18 | % of vectors, A and B. The pseudo-Euclidean distance with the signature SIG |
---|
| 19 | % (e.g. SIG = [10 5]) between vectors X and Y is comuted as an indefinite |
---|
| 20 | % 'Euclidean' distance: |
---|
| 21 | % D(X,Y) = (X-Y)'*J*(X-Y), |
---|
| 22 | % where J is a diagonal matrix with 1, followed by -1. |
---|
| 23 | % J = diag ([ONES(SIG(1),1); -ONES(sig(2),1)]); |
---|
| 24 | % |
---|
| 25 | % If A and B are datasets, then D is a dataset as well with the labels defined |
---|
| 26 | % by the labels of A and the feature labels defined by the labels of B. If A is |
---|
| 27 | % not a dataset, but a matrix of doubles, then D is also a matrix of doubles. |
---|
| 28 | % |
---|
| 29 | % REMARKS |
---|
| 30 | % Note that square pseudo-Euclidean distances can be negative. |
---|
| 31 | % |
---|
| 32 | % SEE ALSO |
---|
| 33 | % DISTM |
---|
| 34 | |
---|
| 35 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
| 36 | % Faculty EWI, Delft University of Technology and |
---|
| 37 | % School of Computer Science, University of Manchester |
---|
| 38 | |
---|
| 39 | |
---|
| 40 | |
---|
| 41 | function D = psdistm(A,B,sig) |
---|
| 42 | |
---|
| 43 | bisa = 0; |
---|
| 44 | if nargin < 2, |
---|
| 45 | error ('Inputs not specified'); |
---|
| 46 | elseif nargin < 3 |
---|
| 47 | if max (size(B)) == 2 & min(size(B)) == 1, |
---|
| 48 | sig = B; |
---|
| 49 | B = A; |
---|
| 50 | bisa = 1; |
---|
| 51 | else |
---|
| 52 | error('Signature vector SIG expected.'); |
---|
| 53 | end |
---|
| 54 | else |
---|
| 55 | ; |
---|
| 56 | end |
---|
| 57 | |
---|
| 58 | isda = isdataset(A); |
---|
| 59 | isdb = isdataset(B); |
---|
| 60 | a = +A; |
---|
| 61 | b = +B; |
---|
| 62 | [ra,ca] = size(a); |
---|
| 63 | [rb,cb] = size(b); |
---|
| 64 | |
---|
| 65 | if ca ~= cb, |
---|
| 66 | error ('The matrices should have the same number of columns.'); |
---|
| 67 | end |
---|
| 68 | |
---|
| 69 | if any(sig) < 0 | sum(sig) ~= ca, |
---|
| 70 | error('Signature vector SIG is invalid.'); |
---|
| 71 | end |
---|
| 72 | |
---|
| 73 | J = [ones(1,sig(1)) -ones(1,sig(2))]; |
---|
| 74 | D = - 2 .* a * diag(J) * b'; |
---|
| 75 | D = D + ones(ra,1) * (J*(b'.*b')); |
---|
| 76 | D = D + (J * (a'.*a'))' * ones(1,rb); |
---|
| 77 | |
---|
| 78 | % Check numerical inaccuracy |
---|
| 79 | if bisa, |
---|
| 80 | D = 0.5*(D+D'); % Make sure that distances are symmetric for D(A,A) |
---|
| 81 | end |
---|
| 82 | |
---|
| 83 | % Set object labels and feature labels |
---|
| 84 | if xor(isda, isdb), |
---|
| 85 | prwarning(1,'One matrix is a dataset and the other not. ') |
---|
| 86 | end |
---|
| 87 | if isda, |
---|
| 88 | if isdb, |
---|
| 89 | D = setdata(A,D,getlab(B)); |
---|
| 90 | else |
---|
| 91 | D = setdata(A,D); |
---|
| 92 | end |
---|
| 93 | D.name = 'Square Pseudo-Euclidean distance matrix'; |
---|
| 94 | if ~isempty(A.name) |
---|
| 95 | D.name = [D.name ' for ' A.name]; |
---|
| 96 | end |
---|
| 97 | end |
---|
| 98 | return |
---|