%PROTSELFD Forward Prototype Selection for Dissimilarity Matrices % % [W,E,KOPT] = PROTSELFD(D,K,PAR) % W = D*PROTSELFD([],K,PAR) % % INPUT % D Dataset, square dissimilarity matrix % K Integer, desired number of prototypes % PAR 'LOO' - leave-one-out option. This should be used if % the objects are related to themselves. If D is not square, % it is assumed that the first sets of objects in columns and % rows match. % 'ALL' - use all objects (default). % % OUTPUT % W Selection mapping ('feature selection') % E Error stimate as a function of number of selected prototypes % (only reliable for prototype sizes >= class size) % KOPT Estimate for best size in avoiding peaking % % DESCRIPTION % This procedure for optimizing the representation set of a % dissimilarity matrix is based on a greedy, forward selection of % prototypes using the leave-one-out error estimate of the 1NN rule % as a criterion. As this is computed on the given distances in % D, the procedure is based on sorting and counting only and is % thereby fast. In case K=1 just a single prototype has to be returned, % but computing the 1NN error is not possible as all objects are assigned % to the same class. In that case the centre object of the largest class % will be returned. % % Note that the search continues untill K prototypes are found. % This might be larger than desired due to peaking (curse of % dimensionality, overtraining). Therefor an estimate for the % optimal number of prototype is returned in KOPT. % % The prototype selection may be applied by C = B*W(:,1:KSEL), % in which B is a dissimilarity matrix based on the same % representation set as A (e.g. A itself) and C is a resulting % dissimilarity matrix in which the KSEL (e.g. KOPT) best prototypes % are selected. % % REFERENCE % E. Pekalska, R.P.W. Duin, and P. Paclik, Prototype selection for % dissimilarity-based classification, Pattern Recognition, % vol. 39, no. 2, 2006, 189-208. % % SEE ALSO % KNNDC, DISEX_PROTSELFD % Copyright: R.P.W. Duin, r.p.w.duin@prtools.org % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % function [R,e,D,J,nlab,clab] = protselfd(D,ksel,par,J,e,nlab,clab) if nargin < 2, ksel = []; end if nargin < 3 | isempty(par), par = 'all'; end if nargin < 4 % user call if nargin < 1 | isempty(D) % allow for D*protselfd([],pars) R = mapping(mfilename,'untrained',{ksel,par}); R = setname(R,'Forward Prototype Sel'); return end [m,k,c] = getsize(D); if isempty(ksel), ksel = k; end if strcmp(par,'loo') | strcmp(par,'LOO') if k > m error('More rows than columns expected for dissimilarity matrix') end discheck(D(1:k,:)); D(1:k,:) = D(1:k,:) + 1e100*eye(k); % get rid of diagonal for LOO end %Initialise by the centre of the largest class cc = classsizes(D); [cmax,n] = max(cc); % n is the largest class lablist = getlablist(D); nlab = getnlab(D); clab = renumlab(getfeatlab(D),lablist); R = find(nlab == n); C = find(clab == n); dd = +D(R,C); [dmin,rmin] = sort(dd,1); % find one but most remote object [dmin,cmin] = min(dmin(end-1,:)); % find prototype for which this is minimum R = C(cmin); e = zeros(1,ksel); [nlab,clab] = renumlab(getlabels(D),getfeatlab(D)); [dd,J] = min(+D(:,R),[],2); e(1) = sum(clab(R(J)) ~= nlab); if ksel > 1 % this will be a deep recursive call !!! prwaitbar(ksel,'Forward prototype selection') [R,e,D,J,nlab,clab] = protselfd(D,ksel,R,J,e,nlab,clab); prwaitbar(0); end e = e(1:length(+R))/m; R = featsel(k,R); % Find optimal number of prototypes in avoiding peaking Jopt = find(e==min(e)); D = floor((Jopt(end)+Jopt(1))/2); % done! else % internal call, parameters may have another meaning! R = par; % prototypes sofar [m,k,c] = getsize(D); d = +D; S = [1:k]; % all candidates S(R) = []; % exclude ones we have emin = inf; dmin = inf; r = length(R); prwaitbar(ksel,r); for j=S % run over all candidates left % the following tricky statements finds the nearest neighobor indices n % for all objects to their nearest prototype (n=1) or the candidate % prototype (n=2). In ds the minimum distances are stored and used for % solving ties later. [ds,n] = min([d(m*(R(J')'-1)+[1:m]'),d(:,j)],[],2); % the labels of the nearest prototypes and the candidates cclab = [clab(R(J)') repmat(clab(j),m,1)]; % compute the nearest neighbor error using the computed n ee = sum(cclab(m*(n-1)+[1:m]') ~= nlab); de = sum(ds); % if better, use it if ee < emin | ((ee == emin) & (de < dmin)) emin = ee; jmin = j; JJ = [J repmat(r+1,m,1)]; Jmin = JJ(m*(n-1)+[1:m]'); Rmin = [R jmin]; dmin = de; end end if emin <= e(r) | 1 % we even continue if emin increases due to peaking e(r+1) = emin; R = Rmin; if (r+1) < ksel [R,e,D,J,nlab,clab] = protselfd(D,ksel,R,Jmin,e,nlab,clab); end end end