1 | %CUTEIGS Select significant eigenvalues from a list
|
---|
2 | %
|
---|
3 | % J = CUTEIGS(L,PREC)
|
---|
4 | %
|
---|
5 | % INPUT
|
---|
6 | % L List of eigenvalues
|
---|
7 | % PREC Precision parameter (optional; default: 0.0001)
|
---|
8 | %
|
---|
9 | % OUTPUT
|
---|
10 | % J Index of selected eigenvalues
|
---|
11 | %
|
---|
12 | % DESCRIPTION
|
---|
13 | % This is a low-level routine for SELEIGS, which serves PSEM, KPSEM, KPCA and
|
---|
14 | % PEPCA. It makes use of PCHIP determing piecewise cubic Hermite interpolating
|
---|
15 | % polynomial P, built on [1:length(LL) LL], where LL = -sort(-abs(L).^3) folloowed
|
---|
16 | % by a normalization to [0,1]. A third power is used to emphasize the differences
|
---|
17 | % better, as sometimes there is a very long tail of slowly dropping eigenvalues.
|
---|
18 | % The number M of significant eigenvalues is determined such that the ratio
|
---|
19 | % of the estimated derivative of P versus the largest derivative value is smaller
|
---|
20 | % then the given precision, PREC * cumsum(LL).
|
---|
21 | %
|
---|
22 | % Note that M will differ between different samples and for different sizes of L.
|
---|
23 | %
|
---|
24 | % SEE ALSO
|
---|
25 | % MAPPINGS, DATASETS, PSEM, KPSEM, KPCA, PEPCA
|
---|
26 | %
|
---|
27 |
|
---|
28 | % Elzbieta Pekalska, e.pekalska@ewi.tudelft.nl
|
---|
29 | % Faculty of Electrical Engineering, Mathematics and Computer Science,
|
---|
30 | % Delft University of Technology, The Netherlands
|
---|
31 |
|
---|
32 |
|
---|
33 | function [J,prec] = cuteigs(L,prec)
|
---|
34 |
|
---|
35 | if nargin < 2 | isempty(prec),
|
---|
36 | prec = 0.0001;
|
---|
37 | end
|
---|
38 |
|
---|
39 | tol = 1e-14;
|
---|
40 |
|
---|
41 | n = length(L);
|
---|
42 | LL = L.^3;
|
---|
43 | [lambda,J] = sort(-abs(LL)/sum(abs(LL)));
|
---|
44 | lambda = -lambda;
|
---|
45 |
|
---|
46 | if n > 1,
|
---|
47 | M = findJ(lambda,prec);
|
---|
48 | else
|
---|
49 | M = n;
|
---|
50 | end
|
---|
51 | JJ = J(1:M);
|
---|
52 |
|
---|
53 | I1 = find (L(JJ) >= 0);
|
---|
54 | I2 = find (L(JJ) < 0);
|
---|
55 |
|
---|
56 | J = [JJ(I1); JJ(I2)];
|
---|
57 |
|
---|
58 |
|
---|
59 |
|
---|
60 |
|
---|
61 |
|
---|
62 |
|
---|
63 |
|
---|
64 | function M = findJ (lambda,prec)
|
---|
65 |
|
---|
66 | n = length(lambda);
|
---|
67 | if n >= 400,
|
---|
68 | Z = [1:80 81:4:n];
|
---|
69 | elseif n >= 200,
|
---|
70 | Z = [1:50 51:2:n];
|
---|
71 | else
|
---|
72 | Z =1:n;
|
---|
73 | end
|
---|
74 |
|
---|
75 | if n > 3
|
---|
76 | % Hermite piecewise cubic interpolating polynomial
|
---|
77 | H = pchip(Z,lambda(Z));
|
---|
78 |
|
---|
79 | % Derivative of the Hermite piecewise cubic polynomial
|
---|
80 | Hder = H;
|
---|
81 | Hder.order = 3;
|
---|
82 | Hder.coefs = zeros(H.pieces,3);
|
---|
83 | for i=1:Hder.pieces
|
---|
84 | pp = polyder(H.coefs(i,:));
|
---|
85 | Hder.coefs(i,4-length(pp):3) = pp;
|
---|
86 | end
|
---|
87 | pder= -ppval(1:n,Hder); % Evaluated derivative
|
---|
88 | else
|
---|
89 | pder= [lambda(1) -diff(lambda')]; % Approximated derivative
|
---|
90 | end
|
---|
91 |
|
---|
92 | % pder(1) is an extrapolated value; pder(2) is used
|
---|
93 | I = find(pder/pder(2) < prec*cumsum(lambda'));
|
---|
94 | II = diff(I);
|
---|
95 | Q = find(II > 1);
|
---|
96 | if ~isempty(Q),
|
---|
97 | I = I(Q(1));
|
---|
98 | end
|
---|
99 | if ~isempty(I),
|
---|
100 | M = I(1)-1;
|
---|
101 | else
|
---|
102 | if n <= 25,
|
---|
103 | M = n;
|
---|
104 | else
|
---|
105 | M = n-1;
|
---|
106 | end
|
---|
107 | end
|
---|
108 | if M < 1, M = 1; end
|
---|