%PE_PARZENC Parzen Classifier for PE spaces % % [W,H,E] = PE_PARZENC(A,H) % [W,H,E] = PE_PARZENC(A) % % INPUT % A PE dataset % H Smoothing parameter (optional; default: H is optimized % with respect to the leave-one-out error on A) % % OUTPUT % W Parzen classifier % H Number of the nearest neighbors used % E The leave-one-out error % % DESCRIPTION % Computation of the Parzen classifier for the PE dataset A. % % Warning: class prior probabilities in A are neglected. % % SEE ALSO % MAPPINGS, DATASETS, PARZENC, PARZENDDC % R.P.W. Duin, r.p.w.duin@prtools.org % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [w,h,e] = pe_parzenc(a,h) if nargin < 2, h = []; end if nargin == 0 | isempty(a) w = mapping(mfilename,'untrained',{h}); w = setname(w,'PE Parzen Classifier'); elseif ~ismapping(h) % training if ~ispe_dataset(a) [w,h] = parzenc(a,h); else if isempty(h) % optimize h for PE space d = sqrt(pe_distm(a)); % find PE distances [v,h] = parzenddc(d,h); % use dis mat routine for optimisation h end if nargout > 2 e = testpd(sqrt(pe_distm(a)),h,'loo'); end w = mapping(mfilename,'trained',{a,h},getlablist(a),size(a,2),getsize(a,3)); end else % execution, testset is in a, trained mapping is in h %retrieve data trainset = getdata(h,1); h = getdata(h,2); d = sqrt(pe_distm(a,trainset)); [e,w] = testpd(d,h); % confidences in w end return