[10] | 1 | %PE_PARZENC Parzen Classifier for PE spaces
|
---|
| 2 | %
|
---|
| 3 | % [W,H,E] = PE_PARZENC(A,H)
|
---|
| 4 | % [W,H,E] = PE_PARZENC(A)
|
---|
| 5 | %
|
---|
| 6 | % INPUT
|
---|
| 7 | % A PE dataset
|
---|
| 8 | % H Smoothing parameter (optional; default: H is optimized
|
---|
| 9 | % with respect to the leave-one-out error on A)
|
---|
| 10 | %
|
---|
| 11 | % OUTPUT
|
---|
| 12 | % W Parzen classifier
|
---|
| 13 | % H Number of the nearest neighbors used
|
---|
| 14 | % E The leave-one-out error
|
---|
| 15 | %
|
---|
| 16 | % DESCRIPTION
|
---|
| 17 | % Computation of the Parzen classifier for the PE dataset A.
|
---|
| 18 | %
|
---|
| 19 | % Warning: class prior probabilities in A are neglected.
|
---|
| 20 | %
|
---|
| 21 | % SEE ALSO
|
---|
| 22 | % MAPPINGS, DATASETS, PARZENC, PARZENDDC
|
---|
| 23 |
|
---|
| 24 | % R.P.W. Duin, r.p.w.duin@prtools.org
|
---|
| 25 | % Faculty EWI, Delft University of Technology
|
---|
| 26 | % P.O. Box 5031, 2600 GA Delft, The Netherlands
|
---|
| 27 |
|
---|
| 28 | function [w,h,e] = pe_parzenc(a,h)
|
---|
| 29 |
|
---|
| 30 | if nargin < 2, h = []; end
|
---|
| 31 |
|
---|
| 32 | if nargin == 0 | isempty(a)
|
---|
[79] | 33 | w = prmapping(mfilename,'untrained',{h});
|
---|
[10] | 34 | w = setname(w,'PE Parzen Classifier');
|
---|
| 35 |
|
---|
| 36 | elseif ~ismapping(h) % training
|
---|
| 37 |
|
---|
| 38 | if ~ispe_dataset(a)
|
---|
| 39 | [w,h] = parzenc(a,h);
|
---|
| 40 | else
|
---|
| 41 | if isempty(h) % optimize h for PE space
|
---|
| 42 | d = sqrt(pe_distm(a)); % find PE distances
|
---|
| 43 | [v,h] = parzenddc(d,h); % use dis mat routine for optimisation h
|
---|
| 44 | end
|
---|
| 45 | if nargout > 2
|
---|
| 46 | e = testpd(sqrt(pe_distm(a)),h,'loo');
|
---|
| 47 | end
|
---|
[79] | 48 | w = prmapping(mfilename,'trained',{a,h},getlablist(a),size(a,2),getsize(a,3));
|
---|
[10] | 49 | end
|
---|
| 50 |
|
---|
| 51 | else % execution, testset is in a, trained mapping is in h
|
---|
| 52 |
|
---|
| 53 | %retrieve data
|
---|
| 54 | trainset = getdata(h,1);
|
---|
| 55 | h = getdata(h,2);
|
---|
| 56 |
|
---|
| 57 | d = sqrt(pe_distm(a,trainset));
|
---|
| 58 | [e,w] = testpd(d,h); % confidences in w
|
---|
| 59 |
|
---|
| 60 | end
|
---|
| 61 |
|
---|
| 62 | return |
---|