source: distools/pe_knnc.m @ 128

Last change on this file since 128 was 79, checked in by bduin, 11 years ago
File size: 1.6 KB
RevLine 
[10]1%PE_KNNC K-Nearest Neighbor Classifier for PE spaces
2%
3%   [W,K,E] = PE_KNNC(A,K)
4%   [W,K,E] = PE_KNNC(A)
5%
6% INPUT
7%   A  PE dataset
8%   K  Number of the nearest neighbors (optional; default: K is
9%      optimized with respect to the leave-one-out error on A)
10%
11% OUTPUT
12%   W  k-NN classifier
13%   K  Number of the nearest neighbors used
14%   E  The leave-one-out error of the KNNC
15%
16% DESCRIPTION 
17% Computation of the K-nearest neighbor classifier for the PE dataset A.
18%
19% Warning: class prior probabilities in A are neglected.
20%
21% SEE ALSO
22% MAPPINGS, DATASETS, KNNC, PE_EM
23
24% R.P.W. Duin, r.p.w.duin@prtools.org
25% Faculty EWI, Delft University of Technology
26% P.O. Box 5031, 2600 GA Delft, The Netherlands
27
28function [w,k,e] = pe_knnc(a,k)
29
30  if nargin < 2, k = []; end
31
32        if nargin == 0 | isempty(a)
[79]33                w = prmapping(mfilename,'untrained',{k});
[10]34                w = setname(w,'PE K-NN Classifier');
35               
36        elseif ~ismapping(k) % training
37               
38                if ~ispe_dataset(a)
39                        [w,k] = knnc(a,k);
40                else
41                        if isempty(k)             % optimize k in PE space
42                                d = pe_distm(a);        % find PE distances
43                                [v,k,e] = knndc(d,k);   % use dis mat routine for optimisation k
44      elseif nargout > 2
45        e = testkd(pe_distm(a),k,'loo');
46                        end
[79]47                        w = prmapping(mfilename,'trained',{a,k},getlablist(a),size(a,2),getsize(a,3));
[10]48                end
49               
50        else % execution, testset is in a, trained mapping is in k
51               
52                %retrieve data
53                trainset = getdata(k,1);
54                k = getdata(k,2);
55                d = pe_distm(a,trainset);
56    [e,w] = testkd(d,k);         % confidences in w
57   
58  end
59               
60return
Note: See TracBrowser for help on using the repository browser.