[10] | 1 | %PE_KNNC K-Nearest Neighbor Classifier for PE spaces
|
---|
| 2 | %
|
---|
| 3 | % [W,K,E] = PE_KNNC(A,K)
|
---|
| 4 | % [W,K,E] = PE_KNNC(A)
|
---|
| 5 | %
|
---|
| 6 | % INPUT
|
---|
| 7 | % A PE dataset
|
---|
| 8 | % K Number of the nearest neighbors (optional; default: K is
|
---|
| 9 | % optimized with respect to the leave-one-out error on A)
|
---|
| 10 | %
|
---|
| 11 | % OUTPUT
|
---|
| 12 | % W k-NN classifier
|
---|
| 13 | % K Number of the nearest neighbors used
|
---|
| 14 | % E The leave-one-out error of the KNNC
|
---|
| 15 | %
|
---|
| 16 | % DESCRIPTION
|
---|
| 17 | % Computation of the K-nearest neighbor classifier for the PE dataset A.
|
---|
| 18 | %
|
---|
| 19 | % Warning: class prior probabilities in A are neglected.
|
---|
| 20 | %
|
---|
| 21 | % SEE ALSO
|
---|
| 22 | % MAPPINGS, DATASETS, KNNC, PE_EM
|
---|
| 23 |
|
---|
| 24 | % R.P.W. Duin, r.p.w.duin@prtools.org
|
---|
| 25 | % Faculty EWI, Delft University of Technology
|
---|
| 26 | % P.O. Box 5031, 2600 GA Delft, The Netherlands
|
---|
| 27 |
|
---|
| 28 | function [w,k,e] = pe_knnc(a,k)
|
---|
| 29 |
|
---|
| 30 | if nargin < 2, k = []; end
|
---|
| 31 |
|
---|
| 32 | if nargin == 0 | isempty(a)
|
---|
| 33 | w = mapping(mfilename,'untrained',{k});
|
---|
| 34 | w = setname(w,'PE K-NN Classifier');
|
---|
| 35 |
|
---|
| 36 | elseif ~ismapping(k) % training
|
---|
| 37 |
|
---|
| 38 | if ~ispe_dataset(a)
|
---|
| 39 | [w,k] = knnc(a,k);
|
---|
| 40 | else
|
---|
| 41 | if isempty(k) % optimize k in PE space
|
---|
| 42 | d = pe_distm(a); % find PE distances
|
---|
| 43 | [v,k,e] = knndc(d,k); % use dis mat routine for optimisation k
|
---|
| 44 | elseif nargout > 2
|
---|
| 45 | e = testkd(pe_distm(a),k,'loo');
|
---|
| 46 | end
|
---|
| 47 | w = mapping(mfilename,'trained',{a,k},getlablist(a),size(a,2),getsize(a,3));
|
---|
| 48 | end
|
---|
| 49 |
|
---|
| 50 | else % execution, testset is in a, trained mapping is in k
|
---|
| 51 |
|
---|
| 52 | %retrieve data
|
---|
| 53 | trainset = getdata(k,1);
|
---|
| 54 | k = getdata(k,2);
|
---|
| 55 | d = pe_distm(a,trainset);
|
---|
| 56 | [e,w] = testkd(d,k); % confidences in w
|
---|
| 57 |
|
---|
| 58 | end
|
---|
| 59 |
|
---|
| 60 | return |
---|