1 | %PE_KERNELM Pseudo-Euclidean kernel mapping |
---|
2 | % |
---|
3 | % K = PE_KERNELM(A,B) |
---|
4 | % W = B*PE_KERNELM |
---|
5 | % W = PE_KERNELM([],B) |
---|
6 | % K = A*W |
---|
7 | % |
---|
8 | % INPUT |
---|
9 | % A Pseudo-Euclidean dataset of size NxK |
---|
10 | % B Pseudo-Euclidean dataset of size MxK |
---|
11 | % |
---|
12 | % OUTPUT |
---|
13 | % W PE mapping |
---|
14 | % K Kernel matrix, size [N M] |
---|
15 | % |
---|
16 | % DESCRIPTION |
---|
17 | % Computation of a kernel matrix in a pseudo-Euclidean space. The signature |
---|
18 | % of this space should be stored in the datasets A and B, see SETSIG. |
---|
19 | % K = A*J*B', where J is a diagonal matrix with 1's, followed by -1's. |
---|
20 | % J = diag ([ONES(SIG(1),1); -ONES(SIG(2),1)]); |
---|
21 | % The two-element vector SIG stores the signature of the space. This is the |
---|
22 | % number of 'positive' dimensions, followed by the number of 'negative' |
---|
23 | % dimensions. It is computed by a pseudo-Eucledean embedding, e.g. PSEM, |
---|
24 | % and stored in the related mapping and datasets that are projected in this |
---|
25 | % space. |
---|
26 | % |
---|
27 | % The resulting kernel matrix K is indefinite in case A == B. This routine |
---|
28 | % may be used in support vector routines and other kernelized procedures. |
---|
29 | % Note that most of such routines are not optimal for indefinite kernels. |
---|
30 | % |
---|
31 | % EXAMPLE |
---|
32 | % a = gendatb; % generate dataset |
---|
33 | % d = a*proxm(a,'m',1); % compute L1 distance matrix |
---|
34 | % w = psem(d); % embed in PE space |
---|
35 | % b = d*w; % project data in this space |
---|
36 | % [trainset testset] = gendat(b,0.5); % split in trainset and testset |
---|
37 | % ktrain = pe_kernelm(trainset,trainset); % compute train kernel |
---|
38 | % w = svc(ktrain,0); % compute SV classifier |
---|
39 | % ktest = pe_kernelm(testset,trainset); % compute test kernel |
---|
40 | % ktest*w*testc % inspect error of testset |
---|
41 | % |
---|
42 | % SEE ALSO |
---|
43 | % DATASETS, MAPPINGS, PE_EM, PE_DISTM |
---|
44 | |
---|
45 | % Copyright: R.P.W. Duin, r.p.w.duin@prtools.org |
---|
46 | % Faculty EWI, Delft University of Technology |
---|
47 | % P.O. Box 5031, 2600 GA Delft, The Netherlands |
---|
48 | |
---|
49 | function w = pe_kernelm(a,b); |
---|
50 | |
---|
51 | if nargin < 2, b = []; end |
---|
52 | mapname = 'PE kernel mapping'; |
---|
53 | if (nargin < 1) | (isempty(a) & nargin == 1) |
---|
54 | % Definition: pe kernel mapping. |
---|
55 | w = mapping(mfilename,{b}); |
---|
56 | w = setname(w,mapname); |
---|
57 | elseif isempty(a) |
---|
58 | w = mapping(mfilename,'trained',b,getlab(b),size(b,2),size(b,1)); |
---|
59 | w = setname(w,mapname); |
---|
60 | elseif isdataset(a) & ~isempty(a) |
---|
61 | if isempty(b) % store a as rep set, 'training' |
---|
62 | w = mapping(mfilename,'trained',a,getlab(a),size(a,2),size(a,1)); |
---|
63 | w = setname(w,mapname); |
---|
64 | elseif isdataset(b); % compute kernel between a and b |
---|
65 | w = pe_mtimes(a,b'); |
---|
66 | elseif ismapping(b) |
---|
67 | if isuntrained(b) % nothing stored yet, do it now, a is rep set |
---|
68 | w = mapping(mfilename,'trained',a,getlab(a),size(a,2),size(a,1)); |
---|
69 | w = setname(w,mapname); |
---|
70 | else % we have already a rep set: compute kernel matrix |
---|
71 | b = getdata(b); |
---|
72 | w = pe_mtimes(a,b'); |
---|
73 | end |
---|
74 | else |
---|
75 | error('Second parameter should be dataset') |
---|
76 | end |
---|
77 | |
---|
78 | else % may be double ??? |
---|
79 | a = dataset(a); |
---|
80 | w = feval(mfilename,a,b); |
---|
81 | |
---|
82 | end |
---|
83 | |
---|
84 | return |
---|
85 | |
---|
86 | |
---|