source: distools/pe_em.m @ 41

Last change on this file since 41 was 28, checked in by bduin, 13 years ago
File size: 6.6 KB
Line 
1%PE_EM Pseudo-Euclidean Linear Embedding
2%
3%     W = PE_EM(D,ALF,P)
4%                 OR
5%     W = PE_EM(W,ALF)
6%
7% INPUT
8%   D   NxN symmetric dissimilarity matrix (dataset)
9%   W   Trained linear embedding into a pseudo-Euclidean space
10%   ALF Parameter determining the dimensionality and the mapping (optional, default: Inf)
11%       (0,1)   - Fraction of the total (absolute value) preserved variance
12%        Inf    - No dimensionality reduction, keeping all dimensions (it's VERY noisy)
13%       'p'     - Projection into a Euclidean space based on positive eigenvalues only
14%       'PARp'  - Projection into a Euclidean space based on the PAR fraction of
15%                 positive eigenvalues; e.g. ALF = '0.9p'
16%       'n'     - Projection into a Euclidean space based on negative eigenvalues only
17%       'PARn'  - Projection into a (negative) Euclidean space based on the PAR fraction
18%                 of negative eigenvalues; e.g. ALF = '0.7n'
19%       'P1pP2n'- Projection into a Euclidean space based on the P1 positive eigenvalues
20%                 and P2 negative eigenvalues; e.g. ALF = '0.7p0.1n', ALF = '7p2n'
21%       1 .. N  - Number of dimensions in total
22%       [P1 P2] - P1 dimensions or preserved fraction of variance in the positive subspace
23%                 and P2 dimensions or preserved fraction of variance in the negative
24%                 subspace; e.g. ALF = [5 10], ALF = [0.9 0.1]
25%   P   Integer between 0 and N specifying which object is mapped at the origin;
26%       0 stands for the mean; (optional, default: 0)
27%
28% OUTPUT
29%   W   Linear embedding into a pseudo-Euclidean space
30%
31% DEFAULT
32%   P   = 0
33%   ALF = INF
34%
35% DESCRIPTION
36% Linear mapping W onto an M-dimensional Pseudo-Euclidean _PE) subspace from a
37% symmetric, square dissimilarity matrix D such that the dissimilarities are preserved.
38% M is determined by ALF. E.g., the subspace is found such that at least a fraction
39% ALF of the total variance is preserved for ALF in (0,1). The resulting X is found
40% by D*W. The signature of the obtained PE space (numbers of positive and negative
41% directions) can be found by GETDATA(W,'sig'). The spectrum of the obtained space
42% can be found by GETDAT(W,'eval').
43%
44% SEE ALSO
45% MAPPINGS, DATASETS, AUGPSEM, PCA, GETSIG, SETSIG
46%
47% LITERATURE
48% 1. L. Goldfarb, A unified approach to pattern recognition, Pattern Recognition, vol.17,
49% 575-582, 1984.
50% 2. E. Pekalska, P. Paclik, and R.P.W. Duin, A Generalized Kernel Approach to
51% Dissimilarity-based Classification, Journal of Machine Learning Research,
52% vol.2, no.2, 175-211, 2002.
53
54% Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com
55% Faculty EWI, Delft University of Technology and
56% School of Computer Science, University of Manchester
57
58% This routine is adapted from PSEM.
59% Old PSEM mappings W may be converted by W = PE_EM(W)
60
61function [W,sig,L,Q] = pe_em(d,alf,pzero,prec)
62
63% PREC is the precision parameter used for the automatic
64% selection (heuristic) of the number of dominant eigenvalues.
65% This happens when SELEIGS is called with the parameter 'CUT'.
66
67if nargin < 4, prec = [];  end
68if nargin < 3, pzero = []; end
69if nargin < 2  alf = [];   end
70
71if nargin < 1 | isempty(d),
72  W = mapping(mfilename,{alf,pzero,prec});
73  W = setname(W,'PE embedding');
74  return
75end
76
77if isempty(prec),  prec = 1e-4; end
78if isempty(pzero), pzero = 0;   end
79if isempty(alf),   alf = inf;   end
80
81if (isdataset(d) | isa(d,'double'))
82  if ismapping(alf)
83    % APPLY THE MAPPING
84    [m,n] = size(d);
85    d     = d.^2;
86
87    Q   = getdata(alf,'evec');  % Eigenvectors
88    me  = getdata(alf,'mdis');  % Vector of the average squared original dissimilarities
89    p   = getdata(alf,'mean');  % p=0 -> the mean of the embedded configuration lies at 0,
90                                % otherwise, it lies at pzero
91    L   = getdata(alf,'eval');  % Eigenvalues
92
93    % Project new data depending on p
94    % (whether the mean or other object lies at the origin)
95    if p == 0,
96      H = -repmat(1,n,n)/n;
97      H(1:n+1:end) = H(1:n+1:end) + 1;     % H = eye(n) - ones(n,n)/n
98      W = -0.5 * (d - me(ones(m,1),:)) * H * Q * diag(sqrt(abs(L))./L);
99    else
100      W =  0.5 * (d(:,p) * ones(1,n) + me(ones(m,1),:) - d) * Q * diag(sqrt(abs(L))./L);
101    end
102
103    % Store signature in the USER field
104    if isdataset(W),
105      W = setname(W,['Projected ' updname(W.name)]);
106      W = setsig(W,getdata(alf,'sig'));
107    end
108    return
109  end
110end
111
112
113
114% REDUCE A TRAINED MAPPING
115if ismapping(d)
116  data = getdata(d);
117  if iscell(data) % check for old type of mapping
118    ispsem(d);
119    dat.evec = data{1};
120    dat.mdis = data{2};
121    dat.mean = data{3};
122    dat.eval = data{4};
123    dat.sig  = data{5};
124    dat.prec = data{6};
125    d = setmapping_file(d,mfilename);
126    d = setdata(d,dat);
127    if nargin < 2
128      W = d;
129      return % conversion only
130    else
131      data = dat;
132    end
133  end
134  Q   = data.evec;  % Eigenvectors
135  L   = data.eval;  % Eigenvalues
136  m    = size(Q,1);
137
138  [ll,K] = sort(-abs(L));
139  L = L(K);
140  Q = Q(:,K);
141  [J,sig] = seleigs(L,alf,getdata(d,'prec'));
142  data.evec = Q(:,J);        % Eigenvectors
143  data.eval = L(J);          % Eigenvalues
144 
145  W = mapping(mfilename,'trained',data,[],m,length(J));
146  W = setname(W,'PE embedding');
147  return
148end
149
150
151
152% TRAIN THE MAPPING
153% Tolerance value used in comparisons
154if mean(+d(:)) < 1,
155  tol = 1e-12;
156else
157  tol = 1e-10;
158end
159
160[n,m] = size(d);
161if ~issym(d,tol),
162  prwarning(1,'Matrix should be symmetric. It is made symmetric by averaging.')
163  d = 0.5*(d+d');
164end
165
166if pzero > n,
167  error('Wrong third parameter.');
168end
169
170d = (+d).^2;
171
172if pzero == 0,
173  % Project the data such that the mean lies at the origin
174  H = -repmat(1/n,n,n);
175  H(1:n+1:end) = H(1:n+1:end) + 1; % H = eye(n) - ones(n,n)/n
176  H = -0.5 * H * d * H;            % H is now the matrix of inner products
177else
178  % Project the data such that pzero's object lies at the origin
179  H = 0.5 * (d(:,pzero) * ones(1,n) + ones(n,1) * d(:,pzero)' - d);
180end
181H = 0.5*(H+H');                    % Make sure H is symmetric
182
183[Q,L]  = preig(H);
184Q      = real(Q);
185l      = diag(real(L));
186[lm,Z] = sort(-abs(l));
187Q      = Q(:,Z);
188l      = l(Z);                     % Eigenvalues are sorted by decreasing absolute value
189
190[J,sig] = seleigs(l,alf,prec);     % J is the index of the selected eigenvalues
191data.eval = l(J);                          % Eigenvalues
192data.evec = Q(:,J);                        % Eigenvectors
193data.mdis = mean(+d,2)';
194data.mean = pzero;
195data.sig  = sig;
196data.prec = prec;
197
198%A  = Q * diag(sqrt(abs(L)));      % Data in a pseudo-Euclidean space
199
200% Determine the mapping depending on pzero
201if pzero == 0,
202  W = mapping(mfilename,'trained',data,[],m,sum(sig));
203else
204  data.mdis = +d(:,pzero)';
205  W = mapping(mfilename,'trained',data,[],m,sum(sig));
206end
207W = setname(W,'PE embedding');
208return
Note: See TracBrowser for help on using the repository browser.