%PE_EM Pseudo-Euclidean Linear Embedding % % W = PE_EM(D,ALF,P) % OR % W = PE_EM(W,ALF) % % INPUT % D NxN symmetric dissimilarity matrix (dataset) % W Trained linear embedding into a pseudo-Euclidean space % ALF Parameter determining the dimensionality and the mapping (optional, default: Inf) % (0,1) - Fraction of the total (absolute value) preserved variance % Inf - No dimensionality reduction, keeping all dimensions (it's VERY noisy) % 'p' - Projection into a Euclidean space based on positive eigenvalues only % 'PARp' - Projection into a Euclidean space based on the PAR fraction of % positive eigenvalues; e.g. ALF = '0.9p' % 'n' - Projection into a Euclidean space based on negative eigenvalues only % 'PARn' - Projection into a (negative) Euclidean space based on the PAR fraction % of negative eigenvalues; e.g. ALF = '0.7n' % 'P1pP2n'- Projection into a Euclidean space based on the P1 positive eigenvalues % and P2 negative eigenvalues; e.g. ALF = '0.7p0.1n', ALF = '7p2n' % 1 .. N - Number of dimensions in total % [P1 P2] - P1 dimensions or preserved fraction of variance in the positive subspace % and P2 dimensions or preserved fraction of variance in the negative % subspace; e.g. ALF = [5 10], ALF = [0.9 0.1] % P Integer between 0 and N specifying which object is mapped at the origin; % 0 stands for the mean; (optional, default: 0) % % OUTPUT % W Linear embedding into a pseudo-Euclidean space % % DEFAULT % P = 0 % ALF = INF % % DESCRIPTION % Linear mapping W onto an M-dimensional Pseudo-Euclidean _PE) subspace from a % symmetric, square dissimilarity matrix D such that the dissimilarities are preserved. % M is determined by ALF. E.g., the subspace is found such that at least a fraction % ALF of the total variance is preserved for ALF in (0,1). The resulting X is found % by D*W. The signature of the obtained PE space (numbers of positive and negative % directions) can be found by PE_SIG(W). The spectrum of the obtained space % can be found by PE_SPEC(W). % % A trained mapping can be reduced further by: W = PE_EM(W,ALF) % The signature of the obtained PE space can be found by PE_SIG(W) % The spectrum of % % SEE ALSO % MAPPINGS, DATASETS, AUGPSEM, PCA, PE_PCA, PE_SPEC, GETSIG, SETSIG % % LITERATURE % 1. L. Goldfarb, A unified approach to pattern recognition, Pattern Recognition, vol.17, % 575-582, 1984. % 2. E. Pekalska, P. Paclik, and R.P.W. Duin, A Generalized Kernel Approach to % Dissimilarity-based Classification, Journal of Machine Learning Research, % vol.2, no.2, 175-211, 2002. % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com % Faculty EWI, Delft University of Technology and % School of Computer Science, University of Manchester % This routine is adapted from PSEM. % Old PSEM mappings W may be converted by W = PE_EM(W) function [W,sig,L,Q] = pe_em(d,alf,pzero,prec) % PREC is the precision parameter used for the automatic % selection (heuristic) of the number of dominant eigenvalues. % This happens when SELEIGS is called with the parameter 'CUT'. if nargin < 4, prec = []; end if nargin < 3, pzero = []; end if nargin < 2 alf = []; end if nargin < 1 | isempty(d), W = mapping(mfilename,{alf,pzero,prec}); W = setname(W,'PE embedding'); return end if isempty(prec), prec = 1e-4; end if isempty(pzero), pzero = 0; end if isempty(alf), alf = inf; end if (isdataset(d) | isa(d,'double')) if ismapping(alf) % APPLY THE MAPPING [m,n] = size(d); d = d.^2; Q = getdata(alf,'evec'); % Eigenvectors me = getdata(alf,'mdis'); % Vector of the average squared original dissimilarities p = getdata(alf,'mean'); % p=0 -> the mean of the embedded configuration lies at 0, % otherwise, it lies at pzero L = getdata(alf,'eval'); % Eigenvalues % Project new data depending on p % (whether the mean or other object lies at the origin) if p == 0, H = -repmat(1,n,n)/n; H(1:n+1:end) = H(1:n+1:end) + 1; % H = eye(n) - ones(n,n)/n W = -0.5 * (d - me(ones(m,1),:)) * H * Q * diag(sqrt(abs(L))./L); else W = 0.5 * (d(:,p) * ones(1,n) + me(ones(m,1),:) - d) * Q * diag(sqrt(abs(L))./L); end % Store signature in the USER field if isdataset(W), W = setname(W,['Projected ' updname(W.name)]); W = setsig(W,getdata(alf,'sig')); end return end end % REDUCE A TRAINED MAPPING if ismapping(d) data = getdata(d); if iscell(data) % check for old type of mapping ispsem(d); dat.evec = data{1}; dat.mdis = data{2}; dat.mean = data{3}; dat.eval = data{4}; dat.sig = data{5}; dat.prec = data{6}; d = setmapping_file(d,mfilename); d = setdata(d,dat); if nargin < 2 W = d; return % conversion only else data = dat; end end Q = data.evec; % Eigenvectors L = data.eval; % Eigenvalues m = size(Q,1); [ll,K] = sort(-abs(L)); L = L(K); Q = Q(:,K); [J,sig] = seleigs(L,alf,getdata(d,'prec')); data.evec = Q(:,J); % Eigenvectors data.eval = L(J); % Eigenvalues W = mapping(mfilename,'trained',data,[],m,length(J)); W = setname(W,'PE embedding'); return end % TRAIN THE MAPPING % Tolerance value used in comparisons if mean(+d(:)) < 1, tol = 1e-12; else tol = 1e-10; end [n,m] = size(d); if ~issym(d,tol), prwarning(1,'Matrix should be symmetric. It is made symmetric by averaging.') d = 0.5*(d+d'); end if pzero > n, error('Wrong third parameter.'); end d = (+d).^2; if pzero == 0, % Project the data such that the mean lies at the origin H = -repmat(1/n,n,n); H(1:n+1:end) = H(1:n+1:end) + 1; % H = eye(n) - ones(n,n)/n H = -0.5 * H * d * H; % H is now the matrix of inner products else % Project the data such that pzero's object lies at the origin H = 0.5 * (d(:,pzero) * ones(1,n) + ones(n,1) * d(:,pzero)' - d); end H = 0.5*(H+H'); % Make sure H is symmetric [Q,L] = preig(H); Q = real(Q); l = diag(real(L)); [lm,Z] = sort(-abs(l)); Q = Q(:,Z); l = l(Z); % Eigenvalues are sorted by decreasing absolute value [J,sig] = seleigs(l,alf,prec); % J is the index of the selected eigenvalues data.eval = l(J); % Eigenvalues data.evec = Q(:,J); % Eigenvectors data.mdis = mean(+d,2)'; data.mean = pzero; data.sig = sig; data.prec = prec; %A = Q * diag(sqrt(abs(L))); % Data in a pseudo-Euclidean space % Determine the mapping depending on pzero if pzero == 0, W = mapping(mfilename,'trained',data,[],m,sum(sig)); else data.mdis = +d(:,pzero)'; W = mapping(mfilename,'trained',data,[],m,sum(sig)); end W = setname(W,'PE embedding'); return