source: distools/parzenddc.m @ 66

Last change on this file since 66 was 18, checked in by bduin, 13 years ago

clevald, parzenddc, parzend_map and kem added

File size: 4.0 KB
RevLine 
[18]1%PARZENDDC Parzen density based classifier for dissimilarity data
2%
3%  [W,H] = PARZENDDC(D)
4%  W     = PARZENDDC(D,H)
5%
6% INPUT
7%   D   Dissimilarity dataset
8%   H   Smoothing parameters (optional; default: estimated from D)
9%
10% OUTPUT
11%  W    Trained Parzen classifier
12%  H    Smoothing parameters, estimated from the data
13%
14% DESCRIPTION
15%
16% SEE ALSO
17% DATASETS, MAPPINGS, PARZEND_MAP
18 
19% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org
20% Faculty EWI, Delft University of Technology
21% P.O. Box 5031, 2600 GA Delft, The Netherlands
22
23function [W,h] = parzenddc(d,h)
24 
25  prtrace(mfilename);
26 
27  if nargin < 2, h = []; end
28 
29  % No input arguments: return an untrained mapping.
30  if nargin == 0 | isempty(d)
31    W = mapping(mfilename,h);
32    W = setname(W,'Parzen DisRep Classifier');
33    return;
34  end
35 
36  if nargin < 2 | isempty(h);
37    %prwarning(5,'Smoothing parameters not specified, estimated from the data.');
38    %error('Smoothing parameter estimation not yet implemented')
39    h = [];
40  end
41
42  islabtype(d,'crisp','soft');
43  isvaldfile(d,2,2); % at least 2 objects per class, 2 classes
44  d = testdatasize(d);
45  d = testdatasize(d,'objects');
46 
47  [m,k,c] = getsize(d);
48  nlab = getnlab(d);
49
50  if ~isempty(h)       % Take user settings for smoothing parameters.
51   
52    nlab = getnlab(d);
53    if length(h) == 1
54      hh = repmat(h,m,1);
55    elseif length(h) == c
56      hh = zeros(m,1);
57      for j=1:c
58        J = find(nlab==j);
59        hh(J) = h(j);
60      end
61    else
62      error('Smoothing parameter has wrong size')
63    end
64
65  else   % Estimate smoothing parameters (copied and adapted from parzenc)
66 
67    %error('Not yet implemented')
68
69    % compute all object distances
70    D = +d;
71    dim = intrdim(D);
72    hinit = max(D(:)); % for sure a too high value
73    D = D.^2 + diag(inf*ones(1,m));
74    % find object weights q
75    q = classsizes(d);
76 
77    % find for each object its class freqency
78    of = q(nlab);
79 
80    % find object weights q
81    p = getprior(d);
82    %a = setprior(a,p);
83    q = p(nlab)./q(nlab);
84 
85    % initialise
86    h = hinit;
87    %h = 2.5
88    L = -inf;
89    Ln = 0;
90    z = 0.01^(1/dim); % initial step size
91
92    % iterate
93 
94    len1 = prprogress([],'parzenddc: error optimization smoothing parameter: ');
95    len2 = prprogress([],' %6.4f  %6.4f ',0,0);
96          iter = 0;
97    prwaitbar(100,'parzenc: Optimizing smoothing parameter',m > 100);
98    while abs(Ln-L) > 0.0001 & z < 1
99      % In L we store the best performance estimate found so far.
100      % Ln is the actual performance (for the actual h)
101      % If Ln > L we improve the bound L, and so we rest it.
102                  iter = iter+1;
103                  prwaitbar(100,100-100*exp(-iter/10));
104      if Ln > L, L = Ln; end
105
106      r = -0.5/(h^2);
107      F = q(ones(1,m),:)'.*exp(D*r);           % density contributions
108      FS = sum(F)*((m-1)/m); IFS = find(FS>0); % joint density distribution
109      if islabtype(d,'crisp');
110        G = sum(F .* (nlab(:,ones(1,m)) == nlab(:,ones(1,m))'));
111      else
112        G = zeros(1,m);
113        for j=1:c
114          G = G + sum(F .* (d.targets(:,j) * d.targets(:,j)'));
115        end
116      end
117      G = G.*(of-1)./of;                       % true-class densities
118      % performance estimate, neglect zeros
119   
120      en = max(p)*ones(1,m);
121      en(IFS) = (G(IFS))./FS(IFS);
122      Ln = exp(sum(log(en+realmin))/m);
123 
124      closemess([],len2);
125      len2 = prprogress([],' %6.4f  %6.4f ',h,Ln);
126
127      if Ln < L            % compute next estimate
128        z = sqrt(z);       % adjust stepsize up (recall: 0 < z < 1)
129        h = h / z;         % if we don't improve, increase h (approach h_opt from below)
130      else
131        z = z*z;
132        h = h * z;         % if we improve, decrease h (approach h_opt from above)
133      end
134      %disp([Ln,L,z,h])
135    end
136    closemess([],len1+len2);
137    hh = h*ones(m,1);
138    prwaitbar(0);
139
140  end
141
142  par.objects = [1:m]';
143  par.prior   = getprior(d);
144  par.nlab    = getnlab(d);
145  par.smoothpar = hh;
146  par.weights = ones(m,1);
147   
148  W = mapping('parzend_map','trained',par,getlablist(d),k,c);
149  W = setname(W,'Parzen DisRep Classifier');
150  W = setcost(W,d);
151
152return;
Note: See TracBrowser for help on using the repository browser.