source: distools/mclassdc.m @ 13

Last change on this file since 13 was 10, checked in by bduin, 14 years ago
File size: 3.6 KB
Line 
1%MCLASSDC Multi-Class Dissimilarity-based Classifier from Two-Class Discriminants
2%
3%       W = MCLASSDC(D,CLASSF,MODE)
4%
5% INPUT
6%   D       Dissimilarity dataset
7%   CLASSF  Untrained dissimilarity-based classifier
8%   MODE        Way of handling multi-class problems: 'SINGLE' or 'MULTI'
9%                       (optional; default: 'SINGLE')
10%
11% OUTPUT
12%   W       Combined classifier
13%
14% DEFAULT
15%   MODE = 'SINGLE'
16%
17% DESCRIPTION
18% For the default MODE = 'SINGLE', the untrained classifier CLASSF is called to
19% compute C classifiers between each of the C classes in the dataset D and
20% the remaining C-1 classes. The result is stored into the combined
21% classifier W. There is no combining rule added. The default rule, MAXC
22% might be replaced by adding one, e.g. W = W*MEANC.
23%
24% For the MODE = 'MULTI', the untrained classifier CLASSF is trained between
25% all pairs of classes as well as between each class and all other classes.
26% This total set of C^2 classifiers is combined by MINC.        The use of soft labels
27% is supported.
28% The pairwise classifiers are trained by using a representation set based
29% on the traing objects of the corresponding classes only (just in case of
30% crisp labels). This is the only difference with the use of MCLASSC.
31%
32% EXAMPLE
33% W = MCLASSDC(DISTM(GENDATM(100)),QDC([],0.01),'MULTI')
34%
35% SEE ALSO
36% DATASETS, MAPPINGS, MAXC, MINC
37
38% Copyright: R.P.W. Duin, r.duin@ieee.org
39% Faculty EWI, Delft University of Technology
40
41
42function varargout = mclassdc(D,classf,mode)
43
44prtrace(mfilename);
45if nargin < 3,
46        mode = 'single';
47end
48if nargin < 2,
49        classf = [];
50end
51if nargin < 1 | isempty(D)
52        w = mapping(mfilename,{classf,mode});
53        return
54end
55       
56if ~ismapping(classf) | ~isuntrained(classf)
57        error('Second parameter should be an untrained mapping.')
58end
59
60islabtype(D,'crisp','soft');
61isvaldset(D,1,2);       % At least 1 object per class and two classes
62
63[m,k,c] = getsize(D);
64       
65varout = {};
66if c == 2
67        varargout = map(D,classf);
68        return
69end
70lablist = getlablist(D);
71
72
73switch lower(mode)
74        case 'single'
75                w = [];
76          %     lablist = getlablist(D);
77          for i=1:c
78                        if islabtype(D,'crisp')
79                          mlab = 2 - (getnlab(D) == i);
80                          DD = setlabels(D,mlab);
81                  elseif islabtype(D,'soft')
82                          Dtargets = gettargets(D);
83                          targets  = [Dtargets(:,i) 1-Dtargets(:,i)];
84                          DD                     = dataset(+D,mlab,targets,'lablist',[1 2]');
85                  end
86                        if nargout(classf.mapping_file) > 1
87                                [v,varo] = map(DD,classf);
88                                varout   = [varout {varo}];
89                        else
90                                v = map(DD,classf);
91                        end
92                        w = [w,setlabels(v(:,1),lablist(i,:))];
93          end
94
95
96        case 'multi'
97                w = [];
98          nlab = getnlab(D);
99                [nl,clab,list] = renumlab(getlablist(D),getfeatlab(D));
100          for z=1:c
101                  lab = lablist(z,:);
102                 
103                  J1 = find(nlab==z);
104                  L1 = find(clab==z);
105                  if islabtype(D,'crisp')
106                          mlab     = ones(m,1);
107                          mlab(J1) = zeros(length(J1),1);
108                          DD       = setlabels(D,mlab);
109                  else
110                          problab  = gettargets(D);
111                          mlab     = [problab(:,i1) sum(problab,2)-problab(:,z)];
112                          DD       = settargets(D,mlab,[1 2]');
113                  end           
114                  I1 = setdiff([1:c],z);
115                        if nargout(classf.mapping_file) > 1
116                                [v,varo] = map(DD,classf);
117                                varout   = [varout {varo}];
118                        else
119                                v = map(DD,classf);
120                        end
121                        w = [w,setlabels(v(:,1),lab)];
122
123                  for t = I1
124                          if islabtype(D,'crisp')
125                                  J2 = find(nlab==t);
126                                  L2 = find(clab==t);
127                                  v  = featsel(k,[L1;L2])*(DD([J1;J2],[L1;L2])*classf);
128                                        %disp([z,t]);
129                                        %parsc(v);
130                          else
131                                  mlab2 = problab(:,[z t]);
132                                  v     = setlabels(DD,mlab2)*classf;
133                          end
134                          w = [w,setlabels(v(:,1),lab)];
135                  end
136          end
137          w = minc(w);
138               
139        otherwise
140          error('Unknown mode')
141end
142
143w = setname(w,getname(classf));
144w = setsize(w,[k,c]);
145w = setcost(w,D);
146varargout = {w varout};
147return
Note: See TracBrowser for help on using the repository browser.