[10] | 1 | %MCLASSDC Multi-Class Dissimilarity-based Classifier from Two-Class Discriminants |
---|
| 2 | % |
---|
| 3 | % W = MCLASSDC(D,CLASSF,MODE) |
---|
| 4 | % |
---|
| 5 | % INPUT |
---|
| 6 | % D Dissimilarity dataset |
---|
| 7 | % CLASSF Untrained dissimilarity-based classifier |
---|
| 8 | % MODE Way of handling multi-class problems: 'SINGLE' or 'MULTI' |
---|
| 9 | % (optional; default: 'SINGLE') |
---|
| 10 | % |
---|
| 11 | % OUTPUT |
---|
| 12 | % W Combined classifier |
---|
| 13 | % |
---|
| 14 | % DEFAULT |
---|
| 15 | % MODE = 'SINGLE' |
---|
| 16 | % |
---|
| 17 | % DESCRIPTION |
---|
| 18 | % For the default MODE = 'SINGLE', the untrained classifier CLASSF is called to |
---|
| 19 | % compute C classifiers between each of the C classes in the dataset D and |
---|
| 20 | % the remaining C-1 classes. The result is stored into the combined |
---|
| 21 | % classifier W. There is no combining rule added. The default rule, MAXC |
---|
| 22 | % might be replaced by adding one, e.g. W = W*MEANC. |
---|
| 23 | % |
---|
| 24 | % For the MODE = 'MULTI', the untrained classifier CLASSF is trained between |
---|
| 25 | % all pairs of classes as well as between each class and all other classes. |
---|
| 26 | % This total set of C^2 classifiers is combined by MINC. The use of soft labels |
---|
| 27 | % is supported. |
---|
| 28 | % The pairwise classifiers are trained by using a representation set based |
---|
| 29 | % on the traing objects of the corresponding classes only (just in case of |
---|
| 30 | % crisp labels). This is the only difference with the use of MCLASSC. |
---|
| 31 | % |
---|
| 32 | % EXAMPLE |
---|
| 33 | % W = MCLASSDC(DISTM(GENDATM(100)),QDC([],0.01),'MULTI') |
---|
| 34 | % |
---|
| 35 | % SEE ALSO |
---|
| 36 | % DATASETS, MAPPINGS, MAXC, MINC |
---|
| 37 | |
---|
| 38 | % Copyright: R.P.W. Duin, r.duin@ieee.org |
---|
| 39 | % Faculty EWI, Delft University of Technology |
---|
| 40 | |
---|
| 41 | |
---|
| 42 | function varargout = mclassdc(D,classf,mode) |
---|
| 43 | |
---|
| 44 | prtrace(mfilename); |
---|
| 45 | if nargin < 3, |
---|
| 46 | mode = 'single'; |
---|
| 47 | end |
---|
| 48 | if nargin < 2, |
---|
| 49 | classf = []; |
---|
| 50 | end |
---|
| 51 | if nargin < 1 | isempty(D) |
---|
| 52 | w = mapping(mfilename,{classf,mode}); |
---|
| 53 | return |
---|
| 54 | end |
---|
| 55 | |
---|
| 56 | if ~ismapping(classf) | ~isuntrained(classf) |
---|
| 57 | error('Second parameter should be an untrained mapping.') |
---|
| 58 | end |
---|
| 59 | |
---|
| 60 | islabtype(D,'crisp','soft'); |
---|
| 61 | isvaldset(D,1,2); % At least 1 object per class and two classes |
---|
| 62 | |
---|
| 63 | [m,k,c] = getsize(D); |
---|
| 64 | |
---|
| 65 | varout = {}; |
---|
| 66 | if c == 2 |
---|
| 67 | varargout = map(D,classf); |
---|
| 68 | return |
---|
| 69 | end |
---|
| 70 | lablist = getlablist(D); |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | switch lower(mode) |
---|
| 74 | case 'single' |
---|
| 75 | w = []; |
---|
| 76 | % lablist = getlablist(D); |
---|
| 77 | for i=1:c |
---|
| 78 | if islabtype(D,'crisp') |
---|
| 79 | mlab = 2 - (getnlab(D) == i); |
---|
| 80 | DD = setlabels(D,mlab); |
---|
| 81 | elseif islabtype(D,'soft') |
---|
| 82 | Dtargets = gettargets(D); |
---|
| 83 | targets = [Dtargets(:,i) 1-Dtargets(:,i)]; |
---|
| 84 | DD = dataset(+D,mlab,targets,'lablist',[1 2]'); |
---|
| 85 | end |
---|
| 86 | if nargout(classf.mapping_file) > 1 |
---|
| 87 | [v,varo] = map(DD,classf); |
---|
| 88 | varout = [varout {varo}]; |
---|
| 89 | else |
---|
| 90 | v = map(DD,classf); |
---|
| 91 | end |
---|
| 92 | w = [w,setlabels(v(:,1),lablist(i,:))]; |
---|
| 93 | end |
---|
| 94 | |
---|
| 95 | |
---|
| 96 | case 'multi' |
---|
| 97 | w = []; |
---|
| 98 | nlab = getnlab(D); |
---|
| 99 | [nl,clab,list] = renumlab(getlablist(D),getfeatlab(D)); |
---|
| 100 | for z=1:c |
---|
| 101 | lab = lablist(z,:); |
---|
| 102 | |
---|
| 103 | J1 = find(nlab==z); |
---|
| 104 | L1 = find(clab==z); |
---|
| 105 | if islabtype(D,'crisp') |
---|
| 106 | mlab = ones(m,1); |
---|
| 107 | mlab(J1) = zeros(length(J1),1); |
---|
| 108 | DD = setlabels(D,mlab); |
---|
| 109 | else |
---|
| 110 | problab = gettargets(D); |
---|
| 111 | mlab = [problab(:,i1) sum(problab,2)-problab(:,z)]; |
---|
| 112 | DD = settargets(D,mlab,[1 2]'); |
---|
| 113 | end |
---|
| 114 | I1 = setdiff([1:c],z); |
---|
| 115 | if nargout(classf.mapping_file) > 1 |
---|
| 116 | [v,varo] = map(DD,classf); |
---|
| 117 | varout = [varout {varo}]; |
---|
| 118 | else |
---|
| 119 | v = map(DD,classf); |
---|
| 120 | end |
---|
| 121 | w = [w,setlabels(v(:,1),lab)]; |
---|
| 122 | |
---|
| 123 | for t = I1 |
---|
| 124 | if islabtype(D,'crisp') |
---|
| 125 | J2 = find(nlab==t); |
---|
| 126 | L2 = find(clab==t); |
---|
| 127 | v = featsel(k,[L1;L2])*(DD([J1;J2],[L1;L2])*classf); |
---|
| 128 | %disp([z,t]); |
---|
| 129 | %parsc(v); |
---|
| 130 | else |
---|
| 131 | mlab2 = problab(:,[z t]); |
---|
| 132 | v = setlabels(DD,mlab2)*classf; |
---|
| 133 | end |
---|
| 134 | w = [w,setlabels(v(:,1),lab)]; |
---|
| 135 | end |
---|
| 136 | end |
---|
| 137 | w = minc(w); |
---|
| 138 | |
---|
| 139 | otherwise |
---|
| 140 | error('Unknown mode') |
---|
| 141 | end |
---|
| 142 | |
---|
| 143 | w = setname(w,getname(classf)); |
---|
| 144 | w = setsize(w,[k,c]); |
---|
| 145 | w = setcost(w,D); |
---|
| 146 | varargout = {w varout}; |
---|
| 147 | return |
---|