1 | %LPDISTM l_p (p > 0) (Non)-Metric Distance Matrix |
---|
2 | % |
---|
3 | % D = LPDISTM (A,B,P) |
---|
4 | % OR |
---|
5 | % D = LPDISTM (A,B) |
---|
6 | % OR |
---|
7 | % D = LPDISTM (A,P) |
---|
8 | % OR |
---|
9 | % D = LPDISTM (A) |
---|
10 | % |
---|
11 | % INPUT |
---|
12 | % A NxK Matrix or dataset |
---|
13 | % B MxK Matrix or dataset |
---|
14 | % P Parameter, P > 0 |
---|
15 | % |
---|
16 | % OUTPUT |
---|
17 | % D NxM Dissimilarity matrix or dataset |
---|
18 | % |
---|
19 | % DESCRIPTION |
---|
20 | % Computation of the distance matrix D between two sets of vectors, A and B. |
---|
21 | % Distances between vectors X and Y are computed using the lp distance: |
---|
22 | % d(X,Y) = (sum (|X_i - Y_i|.^P))^(1/P) |
---|
23 | % i |
---|
24 | % If P = Inf, then the max-norm distance is computed: |
---|
25 | % d(X,Y) = max (|X_i - Y_i|) |
---|
26 | % |
---|
27 | % If A and B are datasets, then D is a dataset as well with the labels defined |
---|
28 | % by the labels of A and the feature labels defined by the labels of B. If A is |
---|
29 | % not a dataset, but a matrix of doubles, then D is also a matrix of doubles. |
---|
30 | % |
---|
31 | % DEFAULT |
---|
32 | % P = 1 |
---|
33 | % B = A |
---|
34 | % |
---|
35 | % REMARKS |
---|
36 | % P >= 1 => D is metric |
---|
37 | % P in (0,1) => D is non-metric; D.^P is metric and l1-embeddable |
---|
38 | % P = 1/2 => D is city block / Euclidean distance |
---|
39 | % |
---|
40 | % SEE ALSO |
---|
41 | % FLPDISTM, EUDISTM |
---|
42 | % |
---|
43 | |
---|
44 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
45 | % Faculty EWI, Delft University of Technology and |
---|
46 | % School of Computer Science, University of Manchester |
---|
47 | |
---|
48 | |
---|
49 | function D = lpdistm (A,B,p) |
---|
50 | |
---|
51 | bisa = 0; |
---|
52 | if nargin < 2, |
---|
53 | p = 1; |
---|
54 | B = A; |
---|
55 | bisa = 1; |
---|
56 | else |
---|
57 | if nargin < 3, |
---|
58 | if max (size(B)) == 1, |
---|
59 | p = B; |
---|
60 | B = A; |
---|
61 | bisa = 1; |
---|
62 | else |
---|
63 | p = 1; |
---|
64 | end |
---|
65 | end |
---|
66 | end |
---|
67 | |
---|
68 | if p <= 0, |
---|
69 | error ('The parameter p must be positive.'); |
---|
70 | end |
---|
71 | |
---|
72 | isda = isdataset(A); |
---|
73 | isdb = isdataset(B); |
---|
74 | a = +A; |
---|
75 | b = +B; |
---|
76 | [ra,ca] = size(a); |
---|
77 | [rb,cb] = size(b); |
---|
78 | |
---|
79 | if ca ~= cb, |
---|
80 | error ('The matrices should have the same number of columns.'); |
---|
81 | end |
---|
82 | |
---|
83 | |
---|
84 | D = zeros(ra,rb); |
---|
85 | if p < Inf, |
---|
86 | for i=1:rb |
---|
87 | %if ~rem(i,50), fprintf('.'); end |
---|
88 | D(:,i) = sum(abs(repmat(b(i,:),ra,1) - a).^p,2); |
---|
89 | end |
---|
90 | else |
---|
91 | for i=1:rb |
---|
92 | %if ~rem(i,50), fprintf('.'); end |
---|
93 | D(:,i) = max(abs(repmat(b(i,:),ra,1) - a),[],2); |
---|
94 | end |
---|
95 | end |
---|
96 | |
---|
97 | |
---|
98 | %fprintf('\n'); |
---|
99 | if p < Inf, |
---|
100 | D = D.^(1/p); |
---|
101 | end |
---|
102 | |
---|
103 | % Check numerical inaccuracy |
---|
104 | D (find (D < eps)) = 0; % Make sure that distances are nonnegative |
---|
105 | if bisa, |
---|
106 | D = 0.5*(D+D'); % Make sure that distances are symmetric for D(A,A) |
---|
107 | end |
---|
108 | |
---|
109 | % Set object labels and feature labels |
---|
110 | if xor(isda, isdb), |
---|
111 | prwarning(1,'One matrix is a dataset and the other not. ') |
---|
112 | end |
---|
113 | if isda, |
---|
114 | if isdb, |
---|
115 | D = setdata(A,D,getlab(B)); |
---|
116 | else |
---|
117 | D = setdata(A,D); |
---|
118 | end |
---|
119 | D.name = 'Distance matrix'; |
---|
120 | if ~isempty(A.name) |
---|
121 | D.name = [D.name ' for ' A.name]; |
---|
122 | end |
---|
123 | end |
---|
124 | return |
---|