1 | %KSVO Kernel Support Vector Optimizer
|
---|
2 | %
|
---|
3 | % [V,J,T,REG] = KSVO(K,Y,C,R)
|
---|
4 | %
|
---|
5 | % INPUT
|
---|
6 | % K Kernel or a square similarity matrix
|
---|
7 | % Y Label list consisting of -1/+1
|
---|
8 | % C Scalar for weighting the errors (optional; default: 1)
|
---|
9 | % R Parameter: -1,0,1,2
|
---|
10 | % -1 or 'flip', Changes the kernel by flipping negative eigenvalues to
|
---|
11 | % positive
|
---|
12 | % 0 or '', Uses the kernel as it is
|
---|
13 | % 1 or 'reg', Checks positive definiteness and regularizes the kernel by
|
---|
14 | % adding the minimal constant in the form of 10^i to the diagonal
|
---|
15 | % 2 or 'lamreg', Checks positive definiteness and regularizes the kernel by
|
---|
16 | % adding the minimal constant to the diagonal (equal to the magnitude of
|
---|
17 | % the smallest negative eigenvalue)
|
---|
18 | % (optional; default: 0, do not change the kernel)
|
---|
19 | %
|
---|
20 | % OUTPUT
|
---|
21 | % V Vector of weights for the support vectors
|
---|
22 | % J Index vector pointing to the support vectors
|
---|
23 | % T Transformation matrix for the test kernel; to be used in testing
|
---|
24 | % REG Regularization parameter added to the diagonal, if used (R=1,2); a vector
|
---|
25 | % of eigenvalues of K (R=-1), or -1 if not checked (R=0)
|
---|
26 | %
|
---|
27 | % DESCRIPTION
|
---|
28 | % A low level routine that optimizes the set of support vectors for a two-class
|
---|
29 | % classification problem based on the kernel or similarity matrix K. KSVO is called
|
---|
30 | % directly from KSVC. The labels Y should indicate the two classes by +1 and -1.
|
---|
31 | % Optimization is done by a quadratic programming. If available, the QLD function
|
---|
32 | % is used for a positive definite kernel, otherwise an appropriate Matlab routine.
|
---|
33 | %
|
---|
34 | % SEE ALSO
|
---|
35 | % KSVC, SVC, SVO
|
---|
36 |
|
---|
37 | % Copyright: Elzbieta Pekalska, Robert P.W. Duin, ela.pekalska@googlemail.com
|
---|
38 | % Based on SVC.M by D.M.J. Tax, D. de Ridder and R.P.W. Duin
|
---|
39 | % Faculty EWI, Delft University of Technology and
|
---|
40 | % School of Computer Science, University of Manchester
|
---|
41 |
|
---|
42 |
|
---|
43 | function [v,J,T,reg,err] = ksvo(K,y,C,r)
|
---|
44 | prtrace(mfilename);
|
---|
45 |
|
---|
46 | if (nargin < 4),
|
---|
47 | r = 0; % Default: the kernel is used as provided
|
---|
48 | end
|
---|
49 | if (nargin < 3)
|
---|
50 | prwarning(3,'Third parameter not specified, assuming 1.');
|
---|
51 | C = 1;
|
---|
52 | end
|
---|
53 |
|
---|
54 | if all(r ~= [-1,0,1,2]),
|
---|
55 | error('Wrong parameter R.');
|
---|
56 | end
|
---|
57 |
|
---|
58 | err = 0;
|
---|
59 | v = []; % Weights of the SVM
|
---|
60 | J = []; % Index of support vectors
|
---|
61 | reg = -1; % Regularization on the diagonal or a list of eigenvalues, if used; -1, if not checked
|
---|
62 | vmin = 1e-9; % Accuracy to determine when an object becomes the support object
|
---|
63 | iacc = -14; % Accuracy of 10^i to determine whether the kernel is pd or not
|
---|
64 | T = []; % Matrix to transform the test kernel if r = -1
|
---|
65 |
|
---|
66 | % Set up variables for the optimization.
|
---|
67 | n = size(K,1);
|
---|
68 | Ky = (y*y').*K;
|
---|
69 | f = -ones(1,n);
|
---|
70 | A = y';
|
---|
71 | b = 0;
|
---|
72 | lb = zeros(n,1);
|
---|
73 | ub = repmat(C,n,1);
|
---|
74 | p = rand(n,1);
|
---|
75 |
|
---|
76 |
|
---|
77 | if r ~= 0,
|
---|
78 | % Find whether the kernel is positive definite.
|
---|
79 | i = -20;
|
---|
80 | while (pd_check (Ky + (10.0^i) * eye(n)) == 0)
|
---|
81 | i = i + 1;
|
---|
82 | end
|
---|
83 |
|
---|
84 | if r == 1,
|
---|
85 | if i > iacc, % if i is smaller, then the regularization is within numerical accuracy
|
---|
86 | prwarning(1,'K is not positive definite. The diagonal is regularized by 10.0^(%d)',i);
|
---|
87 | end
|
---|
88 |
|
---|
89 | % Make the kernel positive definite by adding a constant to the diagonal.
|
---|
90 | reg = 10.0^i;
|
---|
91 | Ky = Ky + (10.0^(i)) * eye(n);
|
---|
92 |
|
---|
93 | elseif r == 2,
|
---|
94 | L = preig(Ky);
|
---|
95 | L = diag(real(L));
|
---|
96 | I = find(L < 0);
|
---|
97 | if ~isempty(I),
|
---|
98 | % Make the kernel positive definite by adding a constant to the diagonal.
|
---|
99 | reg = -1.001*min(L(I));
|
---|
100 | Ky = Ky + reg * eye(n);
|
---|
101 | pow = round(log10(reg));
|
---|
102 | if pow >= 0
|
---|
103 | prwarning(1,['K is not positive definite. The diagonal is regularized by %' num2str(pow) '.2f'],reg);
|
---|
104 | elseif pow > iacc,
|
---|
105 | prwarning(1,['K is not positive definite. The diagonal is regularized by %0.3g'], reg);
|
---|
106 | else
|
---|
107 | ;
|
---|
108 | end
|
---|
109 | else
|
---|
110 | reg = 0;
|
---|
111 | end
|
---|
112 |
|
---|
113 | else % r = -1,
|
---|
114 | % reverse the negative eigenvalues of the kernel K
|
---|
115 | if i >= iacc,
|
---|
116 | [Q,L] = preig(K);
|
---|
117 | Q = real(Q);
|
---|
118 | L = diag(real(L));
|
---|
119 | reg = L;
|
---|
120 | if all(L >= 0),
|
---|
121 | T = [];
|
---|
122 | else
|
---|
123 | K = Q*diag(abs(L))*Q';
|
---|
124 | Ky = (y*y').*K;
|
---|
125 | T = Q* diag(sign(L)) *Q'; % transformation matrix for the test kernel
|
---|
126 | end
|
---|
127 | else
|
---|
128 | % if i < iacc, then the regularization is within numerical accuracy, so apply it
|
---|
129 | Ky = Ky + (10.0^(i)) * eye(n);
|
---|
130 | end
|
---|
131 | end
|
---|
132 | end
|
---|
133 |
|
---|
134 |
|
---|
135 | % Minimization procedure
|
---|
136 | % QP minimizes: 0.5 x'*Ky*x + f'x
|
---|
137 | % subject to: Ax <= b
|
---|
138 | %
|
---|
139 |
|
---|
140 | done = 0;
|
---|
141 | if r ~= 0 & (exist('qld') == 3)
|
---|
142 | prwarning(5,'QLD routine is used.')
|
---|
143 | v = qld (Ky, f, -A, b, lb, ub, p, 2);
|
---|
144 | done = 1;
|
---|
145 | end
|
---|
146 |
|
---|
147 | if r == 0 | ~done,
|
---|
148 | if (exist('quadprog') == 2)
|
---|
149 | prwarning(5,'Matlab QUADPROG is used.')
|
---|
150 | opt = optimset;
|
---|
151 | opt.Diagnostics = 'off';
|
---|
152 | opt.LargeScale = 'off';
|
---|
153 | opt.Display = 'off';
|
---|
154 | opt.MaxIter = 500;
|
---|
155 | v = quadprog(Ky, f, [], [], A, b, lb, ub,[],opt);
|
---|
156 | else
|
---|
157 | error(5,'KSVC requires Matlab 6.x')
|
---|
158 | end
|
---|
159 | end
|
---|
160 |
|
---|
161 |
|
---|
162 |
|
---|
163 | % Compute the square pseudo-norm of the weights in the corresponding
|
---|
164 | % Hilbert/Krein space. If it is negative (which may happen for a highly
|
---|
165 | % indefinite kernel), then the SVM is not proper.
|
---|
166 |
|
---|
167 | vnorm = v'*Ky*v;
|
---|
168 | if vnorm < 0 | abs(vnorm) < 10^iacc,
|
---|
169 | prwarning(1,'SVM: ||w||^2_PE < 0. The SVM is not properly defined. Pseudo-Fisher is computed instead.');
|
---|
170 | err = 1;
|
---|
171 | v = prpinv([K ones(n,1)])*y;
|
---|
172 | J = [1:n]';
|
---|
173 | return;
|
---|
174 | end
|
---|
175 |
|
---|
176 |
|
---|
177 | % Find all support vectors SVs.
|
---|
178 | J = find(v > vmin);
|
---|
179 |
|
---|
180 | % First find the SVs on the boundary
|
---|
181 | I = find((v > vmin) & (v < C-vmin));
|
---|
182 | Ip = find(y(I) == 1);
|
---|
183 | Im = find(y(I) == -1);
|
---|
184 |
|
---|
185 | if (isempty(v) | isempty(Ip) | isempty(Im))
|
---|
186 | prwarning(1,'Quadratic Optimization failed. Pseudo-Fisher is computed instead.');
|
---|
187 | err = 1;
|
---|
188 | v = prpinv([K ones(n,1)])*y;
|
---|
189 | J = [1:n]';
|
---|
190 | return;
|
---|
191 | end
|
---|
192 |
|
---|
193 |
|
---|
194 | v = y.*v;
|
---|
195 |
|
---|
196 | % Find the output for the SVs:
|
---|
197 | out = y(I)-(K(I,J)*v(J));
|
---|
198 | b = mean(out);
|
---|
199 | v = [v(J); b];
|
---|
200 | return;
|
---|